

20 Dec 95 DRAFT D1

D. Energetic Secrets

The technique of Energetic Secrets replaces Tuples with

SealedEnve-

lope

s as messages in the Joule communication model, incorporating
public-key semantics into the communication foundations. This change
simplifies the Joule semantics (answering questions like, “What is a
message selector?”), incorporates the authentication and other security
properties of Verifiers into the foundation, and improves the potential
efficiency of an untyped Joule implementation by enabling C++-style
dispatch. This Appendix introduces the Energetic Secrets concepts and
uses. In later versions of this document, the concepts in this Appendix
will be integrated into the main body of the text and specified in more
detail.

In using Energetic Secrets, each potential operation (message selector)
is represented by a pair of a Sealer and an Unsealer (which we will call
an Un/Sealer pair), roughly corresponding to send and receive rights
for messages of that operation. When a Sealer is applied to arguments,
it seals them in a new SealedEnvelope that can only be opened by the
corresponding Unsealer. The Unsealer is used by receivers of the Seale-
dEnvelope to recognize the message and extract the arguments.

D.1. Sending Messages

Sealers and Unsealers are typically used implicitly: what had formerly
been a Tuple expression (

foo: arg1 arg2

) implicitly applies a Sealer to
arguments to produce an

Envelope

;

Switch

 and

Server

 constructs implic-
itly extract using Unsealers; and the

Type

 form creates Sealer/Unsealer
pairs. The statement

which sends an envelope sealed with the Sealer for

anOperation:

 con-
taining

arg1

 and

arg2

, is equivalent to

in which the

seal:

 operation, sent to

anOperation:sealer

, produces an
Envelope which is then sent to

receiver

.

Energetic Secrets introduces a new syntactic convention, shown in the
example above: labels implicitly refer to sealers and unsealers with a
naming convention of appending

sealer

 or

unsealer

 to the end.
(Operators append

:sealer

 or

:unsealer

.) The identifier,

anOpera-

• receiver anOperation: arg1 arg2

• receiver (anOperation:sealer seal: arg1 arg2)

D2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tion:sealer

, is just a normal identifier, which is bound to the Sealer for

anOperation:

. Note that the sending of the

seal:

 message to the Sealer
similarly invokes a Sealer and produces an envelope;

seal:sealer

 is a
primitively supplied Sealer (along with a few others like

::sealer

) which
serves to bottom out the mechanism for envelope creation.

D.2. Receiving Messages

Messages are received using

ForAll

 and

choose

: as before. Recognizing
and parsing are different for envelope messages, however. The code
below shows the expansion of a

Switch

 form, which is part of the expan-
sion for a

Server

 form.

The above

Switch

 construct semantically expands into code involving
the

unseal:

 method, as shown in the following fragment for the

foo:unsealer

 branch of the

Switch

:

The invocation of the

foo:unsealer

 takes an envelope (received as a mes-
sage to a

ForAll

, for instance) and, if the envelope really is an envelope
sealed by the corresponding

foo:sealer

, reveals

num

 which is the num-
ber of arguments in the envelope (presumably 2 in this case), and a
server that will reveal each argument when called with an integer index
and a result port. The remainder of the code invokes the supplied argu-
ment function to bind the arguments and executes the nested body. If
the unseal failed, the revealed

num

 would be –1.

D.3. Sealer and Unsealer Types

Sealers and Unsealers are methodical servers that respond to the proto-
col below.

Switch

 envelope

case

 foo: a b

scope in which a and b are visible

case

 bar: c

scope in which c is visible

endSwitch

Define

 num, fn

• foo:unsealer unseal*: envelope num> fn>

endDefine

If

 num = 2

Define

 a = fn :: 0, b = fn :: 1

endDefine

scope in which a and b are visible

endIf

There are no operations on Envelopes beyond the basic ones.

Type

 SealedEnvelope

super

 Basic

endType

Type

 Unsealer

super

 Basic

Given a SealedEnvelope sealed by the corresponding Sealer, reveal the number

of arguments in the envelope and a server that will reveal the arguments. The

‘fn’ may only be invoked once per argument.

op

 unseal*: envelope num> fn>

endType

The num and fn revealed by the
unseal*: operation are just like the
num and fn used for “rest” argu-
ments in Appendix C, Optional
Arguments (and are in fact used to
implement “rest” arguments).

20 Dec 95 DRAFT D3

D.4. Types and Virtual Un/Sealers

The Un/Sealer pairs are typically generated by the

Type

 form. The
straightforward expansion is to generate a different Un/Sealer pair for
each selector. Instead, the

Type

 form can expand to virtual Un/Sealers
(unsealers implemented in Joule) to enable the use of a C++-style vtable
implementation of message dispatch. Where the code:

would normally expand to include un/sealer creation as in:

it would expand instead to create a single Un/Sealer used for the whole
type and would create virtual Un/Sealers that encode a vtable index
(for example the operation’s number in the Type) for each operation.

When sealing, a virtual sealer would take all the supplied arguments,
prefix the vtable index (0 for

foo

 in the above case) and then seal with

T:sealer

. Servers without

T:unsealer

 would be unable to open the enve-
lope, so they couldn’t discover the virtualization. The virtualized

foo:unsealer

 would attempt to unwrap with

T:unsealer

, then check to see
whether the first argument is 0 (the vtable index for

foo

), and only if

Type

 Sealer

super

 Basic

Given any number of args, create a SealedEnvelope that encapsulates them,

and which can only be opened by the corresponding Unsealer.

op

 seal: arg... envelope>

Like seal: except the num and fn arguments are required and are a number and

function so that users can supply a dynamic set of arguments computed at run

time.

op

 seal*: arg... num fn envelope>

endType

Type

 make-un/sealer

op

 :: sealer> unsealer>

endType

Type

 T

op

 foo: a b

op

 bar: c

endType

Define

foo:sealer, foo:unsealer,

bar:sealer, bar:unsealer

• make-un/sealer :: foo:sealer> foo:unsealer>

• make-un/sealer :: bar:sealer> bar:unsealer>

endDefine

Define

foo:sealer, foo:unsealer,

bar: sealer, bar:unsealer

Define

 T:sealer, T:unsealer
• make-un/sealer :: T:sealer> T:unsealer>

endDefine

• virtual-sealer :: T:sealer 0 foo:sealer>

• virtual-unsealer :: T:unsealer 0 foo:unsealer>

• virtual-sealer :: T:sealer 1 bar:sealer>

• virtual-unsealer :: T:unsealer 1 bar:unsealer>

endDefine

D4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

both tests pass would it reveal the arguments of the envelope. The
advantage of this scheme is that a compiler (or even a smart server)
could expand the

Switch

 statement shown in Section D.2 into a single
unseal operation using

T:unsealer

 (instead of one per case alternative)
followed by an indirect jump through a vtable using the index. This
will be described in detail (along with Joule implementations of virtual
sealers and the fast-dispatch Type expansion) in future versions of this
manual.

D.5. Certifying Requests

The last example application of Energetic Secrets presented in this
Appendix is certifying properties of requests. A virtualized sealer can
dynamically type-check arguments and refuse to produce a sealed
Envelope unless the arguments type-check correctly. It can check other
properties as well, including relations between the arguments, and
extending to full pre-condition checking of the arguments. It can ensure
durability by wrapping up, not the arguments, but rather the results of
verifying the arguments, potentially reproducing them so that the
receiver will be assured that the arguments will remain available.

Finally, modules can export different sealers for the same operation that
implement different checks. The exporting module could give the seal-
ers with fewer checks to clients who could prove they passed some
trusted analysis that statically checks preconditions (such as argument
types).

