
 

20 Dec 95 DRAFT 89

 

10.Distribution

 

This chapter explores the issues affecting distributed systems and
describes how Joule satisfies them. The solutions discussed assume the
availability of the resource management tools described in the preced-
ing chapter. By providing mechanisms to support process migration, as
well as default policies, Joule supports the full spectrum of distribution
regimes, from automatic distribution in which processes are automati-
cally spread across multiple processors, to explicit distribution in
which the programmer controls or influences the mapping from pro-
cesses to processors, to untrusting distribution in which the
programmer explicitly manages and adapts to trust boundaries and
failure properties of the network.

 

10.1. Transparency

 

Transparency is the ability of a program written in Joule to function
unaffected as it is stretched out across machines. This section will first
describe the importance of transparency, then examine the primitives
and the computational model to show how machine boundaries and
communication lags can be invisible to an executing program.

 

10.1.1. Separation of distribution from correctness

 

Transparency allows programs to first be built to work, then be distrib-
uted without breaking the logic of the program. Because the
assignment of processes to processors doesn’t change the program,
transparency also increases reliability and maintainability.

 

10.1.2. Adaptive distribution requires transparency

 

Adaptive distribution is the ability to write programs that migrate
other, already-running programs to improve performance or adapt to
the changing topology of a network. This adaptability requires that
machine boundaries move in relation to the underlying program, with-
out the program being changed. This transparency enables adaptive
and automatic distribution, and also enables applying all the abstrac-
tion power of the language to the problem, including price-based
competition among processors.

 



 

Distribution

90 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

10.1.3. Channels stretch across wires

 

The semantics of Channels is such that they can be stretched across
wires (with the inherent delays, etc.) without breaking.

 

10.1.4. Trust relationships are the same

 

The security system provides programs with ways of managing trust
boundaries. Distributed systems simply introduce more trust bound-
aries, so the nature of the system stays the same, and programs will
already be built to deal with the security problems revealed by distrib-
uted systems.

 

10.2. Failures in Distributed Systems

 

A continuously-operational open, distributed environment must
remain robust in the face of many failure modes that are either not
present or not obvious on single machines. This section explores many
of them, and briefly describes Joule’s solutions.

 

10.2.1. Node Failures

 

Node failures occur when a machine on the network fails. This section
will describe the 

 

Unavailable

 

 exception which reports the failure and
describes how to handle this exception. It will also describe using mes-
sage plumbing to acquire control over the raising of this exception.

 

10.2.2. Network Partitions

 

A network partition is like a multiple-node failure except that the
machines may return to service. Many applications can withstand the
wait, so handling the return of access to a service is important. This sec-
tion will describe the handling of the 

 

Available

 

 exception, which is
reported when a service returns, and give examples.

 

10.2.3. Aberrant Behavior

 

Because of the Joule computational model, malicious and arbitrary
behavior in a distributed system creates no new problems. Therefore,
the security support deals with aberrant behavior of nodes in the dis-
tributed system. Further, the virtualizability of Joule channels allows
them to be transparently encrypted between sites, so they can remain
secure from eavesdroppers.

 

10.2.4. Node Amnesia

 

Since Joule is a persistent system, a particularly difficult form of failure
is for a node to fail, and then revive in a previous state (from a check-
point or backup). The issues here are complicated and subtle and will
not be dealt with in detail in this document.

 

10.3. Explicit Distribution

 

This section will describe how a programmer can explicitly distribute a
Joule computation. It will describe one particular distribution infra-
structure, and how programs should interact with it.



 

Frameworks for Automatic Distribution

20 Dec 95 DRAFT 91

 

10.3.1. Migration

 

This section will describe how to migrate processes between virtual
processors in order to modify or improve the topology of a network.

 

10.4. Frameworks for Automatic Distribution

 

This section will build on the previous section to describe a framework
in which programs can be automatically distributed (though not as
well as a programmer might do), with no change to the program.

 

10.4.1. Simple Mechanisms

 

This section will describe a minimal strategy for automatically distrib-
uting processes to processors.

 

10.4.2. Stochastic/Heuristic

 

This section will describe stochastic and heuristic methods for load-bal-
ancing and distribution of processes to processors.

 

10.4.3. Agoric-Driven

 

This section will describe price-based strategies for load-balancing
between processes using some of the agoric resource-management
foundations.

 

10.5. Off-line Distribution

 

Occasionally-connected networks are those whose sites rarely talk to
each other. This definition applies primarily to laptops and the net-
works to which they connect, and to networks that connect periodically
to transmit updates (for example, USENET links). This section will
describe how Joule distributes successfully over occasionally-con-
nected networks.



 

Distribution

92 Joule: Distributed Application Foundations 20 Dec 95 DRAFT


