
 

20 Dec 95 DRAFT A1

 

A. Language Comparison

 

This section reviews other languages and systems relative to the
requirements for robust servers and open distributed systems. It also
compares the capabilities of Joule with those of its antecedents, Actors
and concurrent constraint languages.

Joule is designed to be a foundation for distributed applications. It is
largely a language foundation because a language can be layered on
top of any operating system, enabling the foundation to be made
extremely portable. Since the design captures many of the ideas from
good operating systems, the semantics also match well with network
and machine operating systems.

Many people consider language and system comparisons a soft and
subjective art. The discussion of server and market-based computation
in Section 1.1 provides the foundation for a hard-edged discriminant
for comparing languages and systems: Can they build robust servers?
This requires encapsulation, concurrency, and resource management.

The present comparison only applies the robust servers criterion.
Future versions of this section will also document the large contribu-
tions from previous languages. In the present comparison, however, we
consider only those features which are lacking in a particular language
but present in Joule. We offer our apologies if this narrow focus makes
the comparison seem invidious, and hope to amend this lack in future
versions.

 

A.1. Language Comparison

 

Languages like C and C++ do not have true encapsulation; any pro-
gram in the same address space can violate the modularity of objects by
using casts. Systems that glue together separately-written C or C++
programs to attempt to support distributed programs are considered
separately. They don’t provide C or C++ any more support than they
provide to assembly language programs.

Even if these programming languages provided modularity, they still
lack concurrency. Again, concurrency tools like threads that are pro-
vided by the operating system are really a property of the operating
system, and are considered in the next section.

The Smalltalk language and system are extremely good, but all imple-
mentations provide hooks for the debugger that any object can use to
violate modularity; the language semantics provide encapsulation but

 



 

A2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

the environment throws it away. Smalltalk is also a sequential lan-
guage. The standard support for concurrency is a Semaphore
mechanism with non-preemptive multi-tasking; this is not sufficient for
reactive, concurrent systems.

The Linda language and system can be considered together because
they share the same semantics. Linda assumes a global tuple space for
communication. In a distributed system, the existence of that global
structure is untenable—machines fail, networks partition, etc. The reli-
ability of a robust server cannot depend on the reliability of machines
on which the robust server is not running. Further, the tuple-space of
Linda is insecure: tuples are just placed in the space and other processes
pattern match against the tuple-space to extract 

 

any

 

 tuple they recog-
nize. Proposals have been made for M-Linda, a Linda with multiple
tuple-spaces that was moving towards the Joule communication
semantics, but progress on that front stopped.

Languages like Actors, ABCL/1, and Hermes, and concurrent logic
programming languages like FCP, FGHC, and Janus all have the requi-
site encapsulation and concurrency properties. They do not have
sufficient resource management capabilities to implement robust serv-
ers well, but they come the closest of existing programming languages.
Many of the logic programming languages suffer from the additional
disadvantage of a global environment for procedure definitions; such
global constructs break in large, distributed systems. The Joule compu-
tational model is a direct combination of features from the Actors
computational model and the concurrent logic programming model.

 

A.2. Operating Systems

 

Operating systems on consumer platforms (Macs and PC) often pro-
vide no encapsulation, so they cannot be a foundation for robustness.
More sophisticated operating systems like Windows NT and UNIX
have more encapsulation—they provide inviolable accessibility bound-
aries between applications—but hidden in their complexity they throw
away the security in the abstractions that they provide to programmers
(in UNIX, every program that runs with root permissions is a potential
hole through which the entire system could become vulnerable). The
resulting systems have holes that are fatal flaws when connected into a
network with untrusted clients.

Micro-kernel operating systems like Mach start with capability security
and provide a clean enough environment that they can be secure. They
also clearly provide concurrency. The mechanisms for resource man-
agement don’t provide much flexibility, but they are capable of
supporting robust servers.

KeyKOS goes one step further. KeyKOS is a capability-based, secure
operating system that provides hooks for explicitly managing compu-
tational resources such as processor time and memory. The only
remaining lack is that it does not provide transparent forwardability of
message passing between operating system objects (called Domains).
As a result, the KeyKOS model cannot be extended to a network
transparently.


