

Joule:
Distributed
Application
Foundations

300 Third Street

Los Altos, CA 94022

ph 415 941 8224

800 54 JOULE

fax 415 941 8225

Agorics,
Inc.

Agorics Technical Report ADd003.4P

The Joule system is a foundation for building distributed applications. It combines many mecha-
nisms already built and tested in existing products and systems. To encourage widespread
acceptance and use of Joule, Agorics expects to release a public license implementation of Joule.
Agorics also plans additional Joule development, to support the system as it grows, and to apply
the ideas to other platforms.

Trademarks of products mentioned in this manual are the property of their respective holders.

20 Dec 95 DRAFT 1

Introduction

This is the technical manual for the Joule programming language. It is
intended to familiarize the reader with the concepts underlying Joule,
with Joule syntax, and with the fundamentals of a Joule programming
environment. When you have finished reading this book, you should
be able to read and create simple Joule programs.

The core of Joule is a new computational model for building distributed
systems. Many of the ideas are distilled from existing systems, and
could be applied at the language level, at the operating system level, or
(as in CORBA) as extensions to existing languages. This manual
describes the Joule programming language, a pure realization of these
ideas that remains portable across all platforms (where an operating
system would not). The Joule language is intended as a foundation for
distributed systems, providing support in the language for many of the
abstractions needed for network- or multiprocessor-based applications.
Heretofore, it has been necessary to “reinvent the wheel” in many
instances—to reimplement familiar techniques, tailoring them to the
current special case. The goal of Joule is to provide the functionality
required for distributed computing, in a straightforward and secure
environment.

Chapter 1,

Foundations,

 describes the intellectual origins of Joule and
outlines the basic ideas on which the language is based.

Chapter 2,

Introductory Examples,

 leads the reader through four simple
Joule programs—the familiar factorial and compound-interest func-
tions, plus two other servers that demonstrate some of the unique
qualities of Joule.

Chapter 3,

Simple Execution Model,

 describes the rules that all Joule com-
putations must follow, and is intended to give the reader an intuition of
how Joule computations could actually get work done; it is not
intended to represent an efficient execution model.

Chapter 4,

Syntax,

 presents an informal syntax for Joule. (For a formal
syntax, see Appendix B.) Syntactic abstraction—the set of techniques
for extending the Joule syntax—is discussed but not specified in this
document.

Chapter 5,

Language Definition,

 describes the present state of the Joule
language design. It describes the computational primitives, along with
typical techniques of their use, and provides a description of the syntac-

2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tic forms built from those primitives to directly support routine
programming tasks.

Chapter 6,

Hierarchical Accounts Example,

 presents a more complex Joule
program, a hierarchical bank account. Hierarchical bank accounts pro-
vide a necessary component of

agoric resource management

—the use of
market mechanisms to control allocation of computational resources
like CPU time and network bandwidth (described more fully in Chap-
ter 9). The program, and the underlying Joule concepts, are explained
in detail.

Chapter 7,

Boundary Foundations,

 describes the low-level foundations
that support boundaries for creation and initiation of new programs in
a running system, termination and resource management for existing
programs, and access to foreign services. These foundations provide
the mechanism on which the policies described in Section 5.10,

Module
Programming,

 are built.

Chapter 8,

Security

, introduces Joule’s security foundations, many of
which were drawn from or inspired by KeyKOS, a capability-based
operating system, and by public-key security principles.

Chapter 9,

Resource Management,

 describes managing resources in
Joule. It first describes some underlying principles for resource man-
agement abstractions. It then describes facilities for resource
encapsulation and transfer, the foundations for resource management.
Finally, it describes market-based resource management mechanisms
for making resource trade-offs in complex systems.

Chapter 10,

Distribution,

 explores the issues affecting distributed sys-
tems and describes how Joule deals with them. This chapter describes
support for the full spectrum of distribution regimes, from automatic
distribution in which processes are automatically spread across multi-
ple processors, to explicit distribution in which the programmer
controls or influences the mapping from processes to processors, to
untrusting distribution in which the programmer explicitly manages
and adapts to trust boundaries and failure properties of the network.

Chapter 11,

Persistence,

 describes possible implementations of persis-
tence in Joule. The trade-offs between these implementations remain
largely unexplored for Joule, though much of the territory is known for
other related systems such as FCP, Actors, and KeyKOS.

Appendix A,

Language Comparison,

 reviews other languages and sys-
tems relative to the requirements for robust servers and open
distributed systems. It also compares the capabilities of Joule with
those of its antecedents, Actors and concurrent constraint languages.

Appendix B,

BNF for Joule Syntax,

 gives a description of the Joule syntax
in Backus-Naur form.

Appendix C,

Optional Arguments,

 presents a proposal for managing
optional arguments and “rest” arguments in messages.

Appendix D,

Energetic Secrets,

 describes how

SealedEnvelope

s will
replace Tuples in the Joule communication model, incorporating pub-
lic-key semantics into the communication foundations.

The Energetic Secrets material
appears in an appendix because
it has not yet been integrated
into the rest of the manual.

20 Dec 95 DRAFT 3

Appendix E provides a bibliography of articles and books that influ-
enced the design of the Joule programming language or that present
background information on various aspects of the Joule design.

The Joule language is a work in progress, and pieces of this design will
change as more experience with the syntax and computational model is
gained. This book too is a work in progress; many sections remain
unfinished. Some of the unfinished sections require incorporation of
already developed techniques (such as the Security sections), others
require s ignificant design work (such as Agoric Resource
Management).

Many thanks to the people who helped make this document and the
technology behind it possible.

4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

