
 

20 Dec 95 DRAFT 5

 

1.Foundations

 

This chapter presents the intellectual foundations for Joule: first, a brief
synopsis of the history of programming languages, with emphasis on
characteristics relative to distributed systems and Joule; second, a
checklist of the criteria for distributed object programming languages
(criteria which motivated the development of Joule); and third, a recap
of some familiar, well-established design principles, showing how
Joule embodies these principles in its design and supports the applica-
tion of these principles to programs written in Joule. 

 

1.1. Antecedents

 

1.1.1. The Rise of Modularity

 

From straight-line code to procedures to objects, the history of pro-
gramming languages has been a history of increasing modularity to
help solve increasingly complex problems. Modularity makes inter-
faces between pieces explicit, so that the extent to which the separate
pieces interact can be controlled, then minimizes the dependencies
required for a given level of cooperation. The more extreme the modu-
larity, the more the unintended dependencies between the parts can be
avoided. As systems get more complex, these interactions start to com-
pound, placing an upper bound of complexity on the sophistication of
programs and the size of a problem they can solve.

With procedures, programmers created boundaries around packages of
behavior, allowing them to define procedures once and then not worry
about the implementation when using those procedures. Factors such
as data interactions in global environments still led to unintended inter-
actions and a limit on the sophistication of programs.

With abstract data-types, programmers created boundaries around
static packages of data and behavior, increasing the sophistication in
each “black box”. Programs could now manipulate entities represent-
ing abstractions relevant to the problem being solved.

With objects, programmers created boundaries around dynamic pack-
ages of behavior and state. The polymorphism of object-oriented
programming enables a much stronger separation between interfaces
and implementations, allowing black boxes to hide not just the details
of implementation, but also the details of which of many implementa-
tions the black box represents. The complexity limitations come from

 



 

Foundations

6 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

the vestiges of global environments and the difficulty of synchronizing
on shared data in a concurrent environment.

In the book 

 

The Mythical Man-Month

 

 

 

[14]

 

, Frederick Brooks described a
study in which it was discovered that programmers wrote the same
number of debugged lines of code per day no matter what program-
ming language they were using. This observation motivated the drive
towards higher-level programming languages that culminated in lan-
guages like APL and PL/1: the more and higher-level the abstractions
they could make accessible, the more effective each line of code written
by the programmers would be. At the same time, a much smaller
thread was pursued in, for example, the Lisp community, leading
through Simula, Smalltalk, and C++: the thread of abstraction lan-
guages. Instead of building in particular high-level abstractions, this
new class of languages provided tools for programmers to build
abstractions extending the language itself. In these languages, each line
of code contributes to the level of abstraction of the next line of code. As
a result, even though they start with much less capability, object-ori-
ented systems have accumulated enough leverage that they are more
effective tools for programming large systems than the high-level lan-
guages: programmers write the same number of lines of code, but they
write more expressively.

By explicitly recognizing these threads of increasing modularity and
abstraction power, Joule takes the next steps along both dimensions.
Many of the capabilities of Joule were discovered by examining exist-
ing large systems such as networks and operating systems for the
modularity tools and abstraction mechanisms which give them organi-
zation, and so make them manageable. The techniques that worked
have survived into many existing systems; the techniques that failed
have either fallen by the wayside or been entrenched in existing sys-
tems and demonstrate obvious failure modes.

 

1.1.2. Distributed Object Programming

 

Distributed object programming brings powerful new capabilities to
computing. However, these capabilities demand the unlearning of
some important paradigms of previous programming languages. The
most important change required in the programmer’s thinking is the
abandonment of sequential call/return control flow. The sequential
control flow and call/return is very natural for procedural divide-and-
conquer programming in which each procedure calls other procedures
in order to accomplish a specific task. The stacking behavior inherent in
call/return is less appropriate for object-oriented systems in which the
objects have invariants that need to be re-established before another
call can be made to the object. In Smalltalk, for example, if a loop run on
a collection of objects removes (or causes to be removed) an object from
the collection, most times the loop operation will fail because it didn’t
expect the arrangement in the collection to change during the iteration. 

The problems of sequential control flow and stack-style call/return are
even worse in distributed object systems because such systems inher-
ently provide concurrency and asynchrony. Sequential programming
languages fundamentally cannot support distributed object systems;
sequential programming languages plus external operating system
support can, but the difficulty of developing applications, and the con-



 

Antecedents

20 Dec 95 DRAFT 7

 

tinued delicacy of communications between machines, suggest that
existing tools are not well-suited to distributed object systems.

An analogy about stacks that is appropriate to objects is that stack-
based programming is like a person whose work patterns are interrupt-
driven. The introduction of a new task forces the current task onto the
back burner. Interrupted tasks accumulate in the back of such a per-
son’s mind like calls on a stack. The mental model associated with a
stack forces all operations into a LIFO queue regardless of the logical
relationships between the tasks or their importance. A trivial but time-
consuming task may be performed before a more important one simply
because it was initiated later. 

Distributed object programming is much more like managing one’s
time with a “to do” list. New tasks can be added to the task list without
interrupting the execution of current tasks, and tasks can be interleaved
without interfering with each other. Dataflow synchronization is like
inter-task dependencies. It drives the ordering of tasks on the to-do list.
“I have to cash my paycheck at the bank before I can buy this week’s
groceries, and I have to buy detergent at the grocery store before I can
do the laundry.” Tasks that are not logically dependent do not interfere
with each other: “I can cook dinner regardless of whether I have done
the laundry.”

This property of distributed object programming derives from the
defining characteristics of asynchrony, concurrency, and fundamental
support for communications. Distributed systems are inherently asyn-
chronous because they have to deal with events arising from multiple
sources at spatially separated sites. The architecture of a distributed
object programming system must be able to cope with this asynchrony
(so that, for example, multiple clients can make requests of a service
simultaneously). Distributed systems require concurrency because
they operate on many machines simultaneously. Finally, because dis-
tributed systems must allow and encourage interaction between sites,
they need to support communications abstractions. Although such sup-
port can be implemented between separate sequential “threads” at
multiple locations, the sequential model adds nothing to the ease of
implementing communications abstractions and distributed systems.

 

1.1.3. Server-Oriented Programming

 

Distributed object systems are rare today because building robustness
on top of today’s network software is difficult. 

 

Server-oriented program-
ming

 

 (SOP) realizes the advantages of distributed object programming,
by making the environment sufficiently resilient for distributed objects
to survive. SOP applies intuitions about client/server systems to all
levels of programming. 

Take, as an example, a database system on a network. Multiple clients
access the database across the network. These clients run concurrently
with the database; they send requests, and occasionally wait for the
answers, but otherwise remain responsive to the user. Such a client
might access multiple databases on more than one machine.

Now, apply these same intuitions about the relationship between the
clients and the database server, but within the database: there’s a
request-handling server for each client user, a disk subsystem, and an



 

Foundations

8 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

indexing engine. The request-handling servers may perform transla-
tions on user queries before calling on the indexing engine with them.
Within the indexing engine is a query optimizer, a B-Tree manager, and
a transaction handler. Within the disk server is a process for each phys-
ical disk drive, a replication manager to protect against media failure, a
transaction log, and a page reshuffler for grouping pages that should be
clustered. Within each disk-drive process is a disk-arm scheduler, a
disk cache manager, and a device controller. 

Each of these units communicates, via well-defined protocols, with the
other modules—and within each unit, sub-units communicate using
other well-defined protocols. At each level of granularity, from the net-
work application to the database to the disk handler to the device
handler, the same client/server intuitions apply: separate servers can
run concurrently and schedule and handle requests from other servers.
Each server is a black box so far as its clients are concerned—the request
handlers need not know which internal servers make up the indexing
engine, so long as it responds appropriately to requests. The particulars
of its internal structure are irrelevant, and may even change over time.

Proper encapsulation is a requirement for the creation of robust servers.
A 

 

robust server

 

 is one which can guarantee continued correct service to
well-behaved clients despite aberrant (that is, arbitrary or malicious)
behavior from other clients. This is in contrast to fault tolerance, in
which servers are able to operate continuously despite component fail-
ures (failure of other servers, or of hardware components). The kernels
of traditional operating systems are designed to be robust—when one
application misbehaves or crashes, the operating system is supposed to
continue uninterrupted service to other applications.

Attempting to implement distributed object programming over today’s
networks reveals problems that already exist, hidden, in single-
machine systems. For example, a single misbehaving application can
degrade the performance of other applications by disrupting services
on which they both rely (causing “thrashing” of virtual memory, or
allocating too much disk space). In a robust system, applications would
be able to cope with temporary unavailability of those services and per-
form productively while waiting for them to return, rather than seizing
up. Server-oriented programming builds tools to deal with the prob-
lems rather than just hide them. 

The foundations of server-oriented programming enable extremely
long-lived systems. These systems must meanwhile be able to grow
and change, which motivates another defining characteristic of server-
oriented programming, 

 

open entry

 

—the capability of adding new com-
ponents or replacing old ones, in a running system, with no
interruption of service. This both requires and enables full encapsula-
tion—a new server can replace an old one, despite having a completely
different internal structure, if and only if its protocol is upward-com-
patible with that of its predecessor. To the clients, no change is visible.

These properties apply at all levels of a server-oriented system,
enabling reliable construction of large and complex systems by assem-
bly of well-behaved components. Properly robust servers in such
systems could independently recover from failure, and communicate
with each other through a well-defined interface such that they have no
interactions beyond those that are explicit. The restriction of inter-

The concept of robust servers is 
a very powerful tool with 
which to distinguish applica-
tion platforms. They can’t be 
built in most systems.

Many of the principles of Joule 
were distilled from existing sys-
tems, and could be applied in 
more than just a language con-
text, improving the robustness 
of more traditional 
applications.



 

Antecedents

20 Dec 95 DRAFT 9

 

server interaction to explicit exchanges within a well-defined protocol
forms the basis for real security in server-oriented systems. Security is
discussed in more detail in Chapter 8.

 

1.1.4. Market-Oriented Programming

 

While server-oriented programming allows programs to guarantee the
correctness and availability of computing services provided to clients,
market-oriented programming enables systems to be adaptive to user
and client needs and available resources by introducing 

 

agoric resource
management

 

. Agoric resource management uses market principles to
dynamically allocate resources among software agents. By introducing
the equivalent of money into the software resource management pro-
cess, Joule takes advantage of the institutions and abstractions that
have been developed for managing the allocation of physical goods.

Markets work in the physical world because, in a sense, they already
form a distributed computing system. Agents exchange goods for
money, and in the process produce information about how valuable
those goods are, in the form of prices. The role of money in a market
system is as an abstraction which represents access to resources. Agents
in a market make their decisions based on local knowledge of prices
and the availability of resources. The information resulting from those
decisions—what to buy and at what price—propagates through the
market (the retail prices a consumer is willing to pay affect the prices
which retailers are willing to pay wholesalers, which in turn affect
deals between wholesalers and manufacturers). The communication of
these price signals enables the whole system—the market and its par-
ticipants—to allocate resources in a way that adapts to changing
conditions and the different needs of different agents more effectively
than could be done by any single allocating agent, based on more infor-
mation than any such agent could access. (The costs of gathering and
processing such information centrally would be prohibitive; much of
the information would be out of date before it reached the central allo-
cator; and in the context of mutually untrusting programs, such a
central allocator might not be trusted by the participants.)

The introduction of market principles to server-oriented programming
systems provides a necessary framework for efficient, decentralized
management of computational resources. Local (in time or space) short-
ages of resources represent an opportunity for load-balancing agents—
arbitrageurs—to correct the imbalance at a profit. Such agents need not
violate the modularity of the programs they’re helping—this resource
allocation can be done through voluntary trade using client/server
communications protocols, as will be seen in the next section.

Market-oriented programming relies on two concepts: the encapsula-
tion of resources—that is, ownership by particular processes of access
to blocks of, for example, memory or processor time—and the commu-
nication of access to those resources, making such ownership
transferable in a flexible manner. This enables a simple initial allocation
of resources among a set of providers (as described in Chapter 9) to
evolve in complexity in response to the specific demands made on the
system.

Encapsulation and communication of resources enable performance to
be guaranteed by allowing programs to reliably purchase the rights to

For resource management 
issues to which markets are not 
well-suited, traditional central-
ized control (as demonstrated 
in the late USSR, for example) 
can also be constructed from 
the resource ownership and 
transfer foundations.



 

Foundations

10 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

particular quantities of resources at a future time. This enables servers
to commit to deadlines for providing computational results to clients.
Encapsulation of access (ownership) lets programs control resources;
communication of access lets programmers build facilities that dynam-
ically allocate those resources.

Object-oriented programming separated 

 

what is to be done

 

 (communi-
cated by inter-object messages) from 

 

how it is to be done

 

 (the methods,
invisible from outside the object, that are enacted in response to each
message), so that the calling object need have no knowledge of the
internals of the called object. A closely analogous benefit arises from the
separation of resources from prices. The use of a medium of exchange
(money) enables ready conversion between different kinds of
resources—memory and processing cycles, for example—which would
otherwise be incomparable.

The need for a particular resource varies with time and with the func-
tion being performed—suppose a particular 3D graphics rendering
package is CPU-intensive. While it is running, the price of processor
cycles goes up relative to memory, so other programs can adjust their
budgets to rely more heavily on memory than on CPU by, for example,
using more caches. If, instead, the system is currently dominated by a
memory-intensive process like a drawing program, physical memory
becomes expensive, making virtual memory more attractive. Resource
management for complex systems needs to provide this same ability to
allocate multiple kinds of resources among multiple users with diverse
needs who contend for those resources. 

 

1.2. Rules of the Game

 

In the context of market-oriented programming, we require a simple set
of rules so that servers can interact with each other predictably. This is
best illustrated by the observation that

 

 a business can be open to the public
because its cash register isn’t.

 

 Supporting such businesses requires strict,
understandable rules so that participants can successfully protect their
own interests while cooperating with other parties. 

A computational foundation for supporting the interaction of diverse
parties also defines the “rules of the game” by which those parties can
interact. One never finishes learning the patterns which emerge from
the rules of an interesting game, but it is important that the rules be
simple enough to be understood completely, particularly if real inter-
ests are at stake.

The relevant systems are the frameworks for interaction. The C lan-
guage, for example, does not support an open system because
programs written in the same C address space can corrupt each other.
C plus UNIX gives better support because it provides processes some
measure of protection from each other. However, the continual security
problems on the Internet (exemplified by the prevalence of “firewalls”
that deliberately cripple insecure communications) demonstrate that C
plus UNIX still does not support open systems because it is too
insecure. 

We define an open system as one which can continue to operate while
allowing untrusted parties to “join the game,” as opposed to the sense



 

Rules of the Game

20 Dec 95 DRAFT 11

 

of “open system” in which any server can get inside any other server,
including its cash box.

The design process for Joule was based on finding a minimal set of
rules that all processes could count on. Everything else necessary for
large scale programming could be built in the framework of the funda-
mental rules. The computational model presented in Chapter 3
describes the rules for everything except resource management.

The checklist for Joule combines the checklists in 

 

[65]

 

 and 

 

[89]

 

, the prin-
ciples presented in Section 1.3 below, and practical issues from building
large systems. Here is a partial informal checklist that drove particular
aspects of the design of Joule:

•

 

Encapsulation and communication of information, access, and resources

 

 

Without this safety, businesses can’t open their doors, users can’t
manage their resources, and groups can’t cooperate.

•

 

Principles scale to arbitrarily large systems

 

 

There should be no inherent bottlenecks such as global state or
inherent distributed transactions.

•

 

No global knowledge, control, or trust

 

 

These would all prevent the cooperation of agents that don’t trust
each other, and they are all single points of failure.

•

 

Robust servers

 

 

i.e., servers that can guarantee continued correct service to well-
behaved clients despite aberrant (that is, arbitrary or malicious)
behavior from other clients

•

 

Open entry

 

 

New services can be started, new customers can connect, and so
forth.

•

 

Security

 

 

i.e., trust management so that services can interact while main-
taining encapsulation boundaries

•

 

Composable correctness

 

 

It’s possible to build something that fulfills its contract relying
only on the contracts of other servers.

•

 

Separate resource management

 

 

This is the familiar principle of separation of concerns, but
applied to a concern that most systems give users very little con-
trol over. This is the foundation out of which agoric resource man-
agement can be built.

•

 

Efficient execution

 

 

The model must be expressive, but must also map well to existing
computer hardware architectures (for example, using message
sending in Joule to implement procedures must be as fast as tradi-
tional procedure invocation).

•

 

Self-basis

 

 

It should be possible to build the distributed system in itself. If
not, then the system doesn’t provide sufficient functionality for
managing distributed systems. Further, no single policy for how
to distribute programs can be right for every application, so it

Joule is certainly not unique in 
this regard. It is unique in the 
set of constraints that were 
applied to guide the design 
process to a set of rules.



 

Foundations

12 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

must be possible to express different distribution solutions in the
language.

•

 

Concurrent and asynchronous

 

 

This is an inherent property of networks of machines that should
be supported directly in the programming model.

 

1.3. Elements of Joule Style

 

This section restates some familiar, well-established design principles
to show how Joule embodies these principles in its design and how it
supports their application to programs written in Joule. 

 

1.3.1. Recursive Abstractions

 

As described previously, the use of the client/server orientation at all
levels of program design gives Joule many of the required characteris-
tics for creating robust systems. This can be generalized to the principle
of 

 

recursive abstractions

 

—the use of similar organizing principles at dif-
ferent levels of operation. This property allows efficient scaling of
code—the techniques learned for building small programs work
equally well for large programs.

Another example is the principle of transparency—at all levels, Joule
clients don’t need to know the true nature of the server with which
they’re dealing; it may be a composite server or merely a transparent
forwarder that chooses among several competing servers. This applica-
tion of the same abstraction at different levels of granularity makes for
more powerful and well-behaved Joule programs.

 

1.3.2. “What”/“How” Separation

 

This is a familiar application of the principle of separation of con-
cerns— separating the interface of a service from its implementation to
achieve better modularity. The interface specifies 

 

what

 

 is to be done—
for example, what services a client requests from a server. The imple-
mentation—the 

 

how

 

—provides the service, but the particulars of the
implementation are not determined by what was requested; the inter-
nals of the server can be any implementation that conforms to the
communication protocol and reveals correct results. An example of this
was described above, in the discussion of separation of messages from
methods in object-oriented programming. This is another organizing
principle for programs which is well-suited to the capabilities of Joule.

Encapsulation is the property of Joule that hides the “how”—the limi-
tation of interaction between processes to explicit exchanges prevents
the calling process from discovering details of the implementation with
which it is interacting. Polymorphism makes the “what” (the message,
or the service requested) independent of a particular “how”—the
server can choose internally among multiple techniques for doing the
work itself, or even subcontract for the service elsewhere, with no dif-
ference apparent to the client.

 

1.3.3. Mechanism/Policy Separation

 

The 

 

mechanism

 

 of a particular function—the features present at the low-
est level of abstraction to enable that function—should not inherently



 

Elements of Joule Style

20 Dec 95 DRAFT 13

 

impose unnecessary limitations on the range or application of that
function. When there isn’t a single “right” answer, Joule provides
frameworks in which many policies can coexist. The restriction of the
uses of a function—the 

 

policies

 

 governing its use—should instead be
reserved for explicit definition at higher levels of abstraction. Caching
strategies are a good example: the most effective strategy varies with
how the cache is used.

The usefulness of this separation comes from abstracting from a set of
desired capabilities the kernel capability which is most fundamental.
An example of this is time-slicing. The fundamental capability is
“determining who has control of the processor when.” A system that
dictates time-slicing at the kernel level is overdetermined; it rules out
real-time applications, for example (as commonly defined). Joule
instead treats ownership of the processor as a fundamental abstraction,
allowing time to be sliced if and as needed, but also allowing for real-
time applications to be built in Joule. This generality allows experimen-
tation with other abstractions besides time-slicing, such as deadline
scheduling.

Mechanism/policy separation is a way of separating things to create a
new domain for distinctions. Putting the most general abilities at the
bottom of a hierarchy of abstractions creates layers which can be used
to determine the abilities of the layers built on them, as needed, rather
than being inflexibly locked in from the very lowest layers on up.

 

1.3.4. Composable Orthogonality

 

The design of the Joule kernel is intended to separate functions along
natural lines that allow the resulting abilities to be distinct, and to pro-
vide synergy when combined. The criterion for separation of functions
is orthogonality: no function should partially duplicate the capability
of another. This is akin to orthogonality in a mathematical coordinate
system: from an orthogonal set of basis vectors, any vector in the space
can be constructed more simply than from a non-orthogonal basis.

In Joule, this clean separation of powers results in smaller abstractions
that give more power. Two structures that overlap in their abilities often
conflict when used together in some ways. The lack of overlap between
facilities in Joule prevents the elements of the Joule kernel from getting
in each other’s way—they can be sensibly combined in any way with-
out conflicting. Also, if two structures overlap, it reduces the space of
abilities that can be accessed by combining them—because they par-
tially reproduce each other’s abilities, less new function is discovered
by using them together. The combination of two orthogonal functions,
however, creates a space of new abilities inaccessible with just one of
the components.

This partitioning of function is a design criterion at every level of Joule.
For example, the

 

 

 

ForAll

 

 

 

statement (introduced in Section 5.3) imple-
ments multiple instantiation of code; the

 

 

 

choose:

 

 

 

message implements
conditionals. There is no way to implement

 

 ForAll 

 

using

 

 

 

choose:

 

, or to
implement

 

 

 

choose:

 

 

 

using

 

 ForAll

 

, yet the two, combined, generate much
of the Joule language. At a higher level of abstraction, resource manage-
ment and concurrency are orthogonal facilities—neither can be used to
generate the function of the other, but combined they give a whole new
set of powerful abilities.



 

Foundations

14 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

1.3.5. Complete Virtualizability

 

Complete virtualizability is one of the primary mechanisms for com-
posable orthogonality. Because clients can only interact with servers by
passing messages, other servers (middlemen) can be interposed
between a client and a server to add functionality without requiring a
change to either the client or the server. Virtualization only aids com-
posability if it is complete: if programs behave differently in the
presence of middlemen that weren’t 

 

intended

 

 to change the behavior,
then middlemen cannot be transparently added. Complete virtualiz-
ability enables 

 

transparent

 

 layering of functionality: servers only affect
each other in intended ways.

One of the driving examples for transparent layering is a distributed
version of Joule built in Joule. Each message from a client goes to a
proxy for the intended server. The proxy turns the message into data
which it sends to a handler on a remote machine. The handler on the
remote machine turns that data back into an equivalent message and
sends the message to the actual server with which the client wanted to
communicate. Complete virtualizability means that neither the client
nor the server can observe whether the network forwarder is there—if
they could, then the client or the server could be written in such a way
that it breaks in a distributed system but not on a single machine. The
ability to observe the forwarder would require every program to take
into account the implementation of the distributed system. With trans-
parent layering, every Joule program can run across a network with 

 

no
change

 

.

Complete virtualizability is a very stringent requirement for the lan-
guage: operations on numbers must succeed even if the “numbers” are
forwarders to numbers on other machines, or user-defined servers for
complex numbers, arbitrary-precision real numbers, or fractions. Mes-
sage sending must work even if the “messages” are user-defined
servers that merely act like messages but are actually implemented
some other way. The techniques with which Joule satisfies these
requirements while remaining efficient to implement have been
designed. Some of these mechanisms will be presented in this docu-
ment. A simple example is the primitive addition operation for
Integers: if it is supplied with a non-Integer addend, it sends the

 

 +from-

Integer 

 

message to the addend, supplying the original receiver (now
known to be a primitive Integer) as an argument, along with the origi-
nal result channel. The original addend (a complex number for
instance) can then supply the behavior for adding itself to an Integer.
This is not the complete story for bottoming out operations on num-
bers, but it demonstrates one of the simple techniques.

The completeness of virtualizability in Joule allows programmers to
transparently extend functionality anywhere. They can build new
transparent layers (such as the distributed system), or they can extend
the functionality of any of the system abstractions (numbers, channels,
messages, and so forth), while preserving the transparent layering
properties of the system. Virtualizability is implemented largely
through anonymity and polymorphism: servers can be distinguished
only by their actions in response to messages. Security sometimes
requires certification, however—you want to deposit only in your bank
account, not some forwarder that might redirect your money. Joule

Anything virtualizable must be 
completely so, but not every-
thing must be virtualizable. 
Numbers can be completely 
virtualizable without Tuples 
being so. However, in Joule, 
everything is completely 
virtualizable.



 

Elements of Joule Style

20 Dec 95 DRAFT 15

 

both supplies certification, which must be used carefully to preserve
virtualizability of abstractions built with it, and provides abstraction to
support virtuality in the presence of certification. 



 

Foundations

16 Joule: Distributed Application Foundations 20 Dec 95 DRAFT


