

20 Dec 95 DRAFT 17

2.Introductory Examples

This chapter introduces the reader to the Joule language and its pro-
gramming style and illustrates many of Joule’s fundamental
mechanisms in the course of explaining how some simple examples
work. (Joule’s underlying computational model is presented in Chapter
3.) The principles illustrated here apply at all levels of granularity—the
message-plumbing techniques used here to interact with very simple
servers are the same as those used with complex and versatile servers—
so these examples can lead to understanding of how to construct large
systems in Joule.

2.1. Forwarding and Expression Syntax

Joule objects, called

servers

, interact with each other by sending mes-
sages to

ports.

 Ports can be extended transparently by

channels

. A
channel is a unidirectional route originating at an

acceptor

 port and ter-
minating at a

distributor

 port, each of which may be held by other
servers. A server that holds the acceptor of the channel can send mes-
sages through it which can be received by any server holding the
distributor.

The distributor can accept a special protocol of messages that instruct it
where to forward the messages originating at the acceptor. One can
think of the channel as a funnel pouring into a hose. One can pour mes-
sages down the funnel, and one can direct the hose to other funnels.

Messages are sent to a port by

•

 (send) statements of the form

•

port

message

. Within some scope, the ports of a channel are named by iden-
tifiers. Typically, if

A

 is the acceptor of a channel,

A>

 will be its
corresponding distributor. The “>” suffix is a convention used to distin-
guish the name of a distributor.

Messages sent to the distributor cause it to change its behavior in some
way. For example, the statement

directs all arriving messages to the port

C

. This statement sends the for-
ward message “

→

 C

” to the distributor

A>

, instructing it to forward all
messages received at

A>

 to

C

.

Messages sent

through

 the channel (via its acceptor) are forwarded to
servers to which the corresponding distributor has been forwarded.

• A>

→

 C

The same server can hold both
ports of a channel—for exam-
ple, in anticipation of passing
one of them off to another
server.

Acceptor

Distributor

A

A>

B C D

Fig. 2.1 • A> → C

Introductory Examples

18 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

Anything can be sent as a message, but most messages will be

Tuples

(ordered sets of ports). Tuples are the most common types of messages

sent in Joule. The first element of a tuple is its name, known as the

oper-

ation

; the other elements are its

arguments

. The statement

sends the tuple

oper: arg1 arg2

 to the port

A

 (and, if

A

 is an acceptor,

through the channel to be delivered by the corresponding distributor).

The colon (“:”) as a suffix distinguishes an operation.

Operators are a special class of operations that do not require the “:”

suffix. The forward statement

A>

→

 C

 is actually the sending of the for-

ward operation “

→

”

to

A>

 (presumably a distributor) with the port

C

as its argument.

In Joule, everything is a server. Numbers are also servers that respond

to a set of messages. The expression

sends the operation named “+” to the server “3” with two arguments:

the port to “4”, and the distributor

x>

 on which to reveal the result. “3”

acts on the addition operation by forwarding the distributor

x>

 to the

server “7”. Results in Joule are “revealed” on a distributor rather than

“returned”—the calling server retains the corresponding acceptor,

which now sends to the server that is the result.

Joule allows an expression-like syntax for operations like “+” that take

as their last argument the distributor of a result channel. The correct

way to think of Joule’s expression-like syntax is to imagine an implicit

intermediate result channel

t1

. Then

performs the same operations as

In practice, this looks as if “3 + 4” becomes a port to which messages

can be sent. A tuple-sending statement like “3 + 4” can then be used as

an argument to operations, including the forward operation:

Precedence, in Joule, reads from right to left. In

• sum>

→

 3 + 4

, the

tuple “+ 4”, sent to “3”, reveals as its result an acceptor to “7”. The for-

ward operation, with the result “7” as its argument, is sent to the

distributor

sum>

, causing

sum>

 to also deliver to “7”. The forward oper-

ator “

→

” routes to the server “7” all messages arriving at the distributor

sum>

.

• A oper: arg1 arg2

• 3 + 4 x>

• sum>

→

 3 + 4

• 3 + 4 t1>

• sum>

→

 t1

• sum>

→

 3 + 4

• Fund withdraw: (3 + 4)

Acceptor

A

Fig. 2.2 • A oper: arg1 arg2

o
p

e
r:

 a
rg

1
 a

rg
2

Servers make use of results by
sending them messages. A print
server might send a number the
operation meaning “give me an
ASCII representation of
yourself”.

The use of “reveal” rather than
“return” also reinforces the
awareness of security in Joule.
A Joule server need reveal only
what it chooses to reveal about
itself. This is discussed more
thoroughly in Chapter 8,
“Security.”

Also, the use of “return” non-
orthogonally mixes data issues
with control issues. “Reveal”
emphasizes that it deals only
with data issues.

Dispatcher

20 Dec 95 DRAFT 19

2.2. Dispatcher

The

Dispatcher

 server implements a simple statistical load-balancing
algorithm for a number of identical servers on a network.

Dispatcher

receives incoming messages and forwards each one to one of the serv-
ers, chosen at random.

Dispatcher

 takes as arguments a distributor

 in>

 (on which the messages
will arrive) and an array

outs

 of ports to a set of servers that all provide
identical services (

outs

 is actually a port to the array, not the array server
itself. For brevity, we will begin referring to acceptors interchangeably
with the servers that they send to, except in cases where this could
cause confusion).

Joule structures called

forms

 begin with a keyword (in bold) which
determines the syntactic type of the form. The

 Server

form binds an
identifier (in this case,

Dispatcher

) to a new server that executes the
nested code block in response to messages from other servers.

Dis-

patcher

 is a

procedural server

; it has a single method which is invoked by
passing the “::” operation to the server with the appropriate number of
arguments. The double colon is the simplest operation name possible in
Joule; to a procedural server, it means “do what you do”—it tells the
procedural server to perform its characteristic behavior.

The

ForAll

 form causes the nested block of code to be executed once for
every message sent to the port defined by the

ForAll

 as its first argu-
ment. Separate invocations are completely independent of one another
and execute concurrently. The

• in>

→

 msgs

 forwards all messages
received on

in>

 to the

ForAll

’s input. The

ForAll

 block is invoked for each
message received, with

message

 bound to that message.

The inner scope of a Joule form consists of all lines of code between the
first and last lines of the form (

Form

 and

endForm

). Names defined in
that block of code are visible anywhere inside that block (including the
scopes of blocks nested within it), but not visible or accessible outside
that block.

The scope of the

ForAll

 form in

Dispatcher

 includes all lines of code from

Define

size

 to

• out message

 inclusive. The distributor

in>

 is defined as a
parameter by the

Server

 statement and is available anywhere within
the

Server

 statement’s scope (including inside the scopes of

ForAll

 and
the

Define

 blocks).

Server

 Dispatcher :: in> outs

• in>

→

 msgs

ForAll

 msgs

⇒

 message

Define

 size

• outs count: size>

endDefine

Define

 index

• Random below: size index>

endDefine

Define

 out

• outs get: index out>

endDefine

• out message

endForAll

endServer

Fig. 2.3 Dispatcher

in>

outs

Servers sending messages to
outs don’t know whether outs
sends directly to the array, or to
an array chosen randomly by
another Dispatcher, and in most
cases don’t need to know.

Procedural servers are a special
case of methodical servers.
Methodical servers can accept a
variety of operations (not just
“::”) and act on them in differ-
ent ways. Random is a
methodical server called by
Dispatcher.

msgs is a good example of a
non-methodical server. As in
this example, non-methodical
servers typically provide mes-
sage plumbing which is
expected to terminate in
methodical servers.

Lexical scoping of identifiers is
discussed in detail in Section
5.3.0.

Introductory Examples

20 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

The

Define

 form creates a channel and binds its ports to identifiers, with
the distributor bound only inside the scope of the define and the accep-
tor bound both inside and outside that scope. Again, distributors are
distinguished by the “>” suffix. The distributor

index>

 is defined inside
the scope of

Define

; hence index> is invisible to statements at the scop-
ing level of ForAll, Server, or • out message. The corresponding acceptor
index is visible in the scope of ForAll because Define creates it in Define’s
outer scope, but it is not generally visible in the scope of Server.

In the diagram below, each box represents the scope of the form sur-
rounding it. At the upper right of each box are listed the identifiers that
are visible only within that scope. Each scope also recognizes the iden-
tifiers that are visible in all boxes outside, so from the scope of the first
Define, the visible identifiers are size> (visible only from within that
Define); message, size, index, and out (since this Define is inside ForAll);
in>, and outs (since ForAll is inside Server).

The nested blocks of code within the three Define forms do the work.
First, the tuple count: size> is sent to the array of outputs outs. This is a
standard operation for arrays; the number of elements in the array is
revealed on the distributor size>—as a result, the acceptor size now
sends to the number of elements in outs.

Next, the tuple below: size index> is sent to the server Random. Random
is assumed to be an existing methodical server that provides random
numbers. This tuple tells Random to forward the distributor index> to a
random integer greater than zero and less than size. (Remember that
the acceptor size is visible in the inner scope of ForAll, and hence also in
the inner scope of this Define.)

Finally, the array outs is sent the tuple get: index out>. This is another
standard operation accepted by arrays, telling outs to forward the dis-
tributor out> to the indexth element of the array.

Back in the outer scope of the last Define, the acceptor out is visible and
now relays messages to an acceptor randomly chosen from those in
outs. The statement • out message forwards message, the original mes-
sage received by ForAll, to the randomly-chosen server at the other end
of out.

Joule belongs to the class of programming languages in which state-
ments execute concurrently, not sequentially. If a Joule statement relies
on the output of another, the code expresses the dependency and that

Server Dispatcher :: in> outs

• in> → msgs

ForAll msgs> ⇒ message

Define size

• outs count: size>

endDefine

Define index

• Random below: size index>

endDefine

Define out

• outs get: index out>

endDefine

• out message

endForAll

endServer

size>

out>

index>

message, size, index, out

msgs, in>, outs

More briefly, “The statement
• out message sends the original
message to the randomly-cho-
sen server out.” The ubiquity of
transparent forwarding in Joule
makes descriptions of pro-
grams extremely verbose (as
you see) unless we refer to
acceptors as if they were the
servers to which they send.

Continuous compound interest

20 Dec 95 DRAFT 21

statement will wait for the input it needs. Each line of code in Dispatcher
executes concurrently.

The statement Random below: size index> establishes communications
links for messages to Random, and can execute whether or not size has
yet been forwarded to its final value. When the Define size block com-
pletes, Random will use the result size to decide where to forward
index>, but the Define index block has already done its part once the
message plumbing to and from Random is established, and can cease
execution.

Similarly, outs get: index out> could also execute, establishing the mes-
sage plumbing to and from the array outs, without needing to wait for
index> to be forwarded. The Define out block connects Random to outs,
in a sense, and then can go away. The out message statement also exe-
cutes concurrently, establishing message pathways in the same way.

The entire process “bottoms out” once outs reveals how many elements
it has; then Random can generate a value for index, and the remaining
forwards can take place, culminating in the final forwarding of
message.

Dispatcher can be rewritten more concisely using Joule’s expression-like
syntax. The intermediate results channels size and out become implicit:

As a matter of programming style, this is a more attractive form of Dis-
patcher because the form of the code follows its function. Dispatcher
does two things: pick a server at random from outs, and send message
to it. This formulation has one line of code for each of these actions.

2.3. Continuous compound interest

This is a simple function that computes continuous compound interest
using the formula P + I = Peαt.

Code in italics represents comments. Like Dispatcher, the new server
continuous-interest accepts the single operation “::” (“do what you do”),
with arguments bound to the principal, the interest rate, the elapsed
time, and a distributor for the result channel. The expression-like syn-

Server Dispatcher :: in> outs

• in> → msgs
ForAll msgs ⇒ message

Define index = Random below: (outs count:) endDefine

• (outs get: index) message

endForAll

endServer

Reveal the interest generated by continually compounding ‘principal’ by ‘rate’ for ‘time’

time-units.
Server continuous-interest :: principal rate time total>

• total> → principal * (e ̂ (rate * time))

endServer

Clearly, statements cannot exe-
cute concurrently on a single
serial processor. In such an
environment, the statements of
a Joule program execute
sequentially but in an order
chosen by the compiler rather
than in the order of their
appearance in the source
listing.

It’s also important to note that,
for every message sent to in, a
separate ForAll is activated, and
all of these activations of ForAll
run concurrently, not sequen-
tially. ForAll is not an iteration
mechanism but a generator of
multiple concurrent processes.
See the next chapter for a more
thorough introduction to the
Joule computational model.

Introductory Examples

22 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tax is used for brevity; assuming the intermediate channels have been
defined, it could be written equivalently as:

with the same result revealed on the channel total.

The continuous-interest server is invoked by statements like:

In either case, the distributor result> is forwarded to the number
84680.00068.

2.4. Factorial

The next example is the familiar factorial function.

Factorial takes two arguments: the number whose factorial is to be com-
puted, and the distributor of the channel on which to reveal the result.
Either of these statements:

means “calculate the factorial of 5 and reveal the result on the distribu-
tor foo>.”

The expression number <= 1 reveals an acceptor to either the true server
or the false server. The server number forwards that distributor to either
true or false when it receives the “<=” operation with 1 as its argument.
More briefly, we may say that number <= 1 reveals either true or false.

The If and else statements and the nested blocks of code under each one
are all part of the same If-endIf form. Such extended forms in Joule enable
more complex program behavior, like conditional execution of code.

Depending on the value revealed by number <=1, Factorial forwards
result> either to 1 or to the acceptor revealed by the expression number *
(factorial :: number - 1). This recursive invocation of Factorial causes the
activation of another instance of the Factorial server calculating the fac-
torial of (number - 1).

• rate * time t1>

• e ̂ t1 t2>

• principal * t2 t3>

• total> → t3

• continuous-interest :: 40000 0.15 5 result>

• result> → (continuous-interest :: 40000 0.15 5)

Reveal the factorial of the supplied number

Server Factorial :: number result>

If number <= 1

• result> → 1

else

• result> → number * (Factorial :: number - 1)
endIf

endServer

• Factorial :: 5 foo>

• foo> → Factorial :: 5

To forward a distributor is to
forward all messages ever
received on it.

Some extended forms like If
have an additional layer of
nested scoping between the
keyword statement and the
inner scopes of the nested
blocks of code under the key-
word and its extension
keywords. The next example,
Fund, discusses this aspect of
extended forms more
thoroughly.

Fund

20 Dec 95 DRAFT 23

2.5. Fund

Fund is a toy bank account used by Carl Hewitt to demonstrate proper-
ties of open systems. Fund is an example of a methodical server.
Methodical servers are servers that respond to a fixed set of requests.
Fund responds to deposit:, withdraw:, and balance:.

Like procedural servers, methodical servers are defined using the
Server form. There may be multiple op extensions to the Server form;
each op statement defines one of the operations to which the server
responds and specifies the arguments expected with that operation.
The block of code under the op statement—the method corresponding to
that operation—is executed whenever the server receives that opera-
tion; in this sense, each op statement is like a separate procedural server
with a different characteristic operation. This entire program consists of
one Server form, including its extension keywords and nested blocks of
code.

The var extensions define state variables for the server. A var is an iden-
tifier which can be reassigned (using the set statement) to a different
value. (It is thus unlike an acceptor—once the corresponding distribu-

Server Fund

var myBalance = 0

return the current balance

op balance: balance>

• balance> → myBalance

reduce the balance by an amount if that much is available

op withdraw: amount flag>

Define newBalance

If amount > myBalance

• newBalance> → myBalance

• flag> → false

orIf amount < 0

• newBalance> → myBalance

• flag> → false
else

• newBalance> → myBalance - amount

• flag> → true

endIf

endDefine

set myBalance newBalance

increase the balance by an amount

op deposit: amount flag>

Define newBalance

If amount < 0

• newBalance> → myBalance

• flag> → false

else

• newBalance> → myBalance + amount

• flag> → true

endIf

endDefine

set myBalance newBalance

endServer

Fund is called a toy bank
because it doesn’t conserve
money, nor does it prevent
forging of money: the deposit:
and withdraw: requests take a
simple number as their argu-
ment. Fund is more like a
rendezvous service that multi-
ple cooperating agents could
use to keep track of how much
money had been used so far.

The procedural form
Server Foo :: ...

is equivalent to
Server Foo

op :: ...

This is for the convenience of
procedures, but any operation
name could be used.

The term method comes from
Smalltalk; it corresponds to the
member function in C++.

Introductory Examples

24 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tor has been forwarded, the server holding the acceptor has no control
over where it sends.) A var is a local instance variable—it is defined
only within the inner scope of the server which created it, and the value
of the var is different in each instance of that server. In the Fund server,
the var myBalance is set initially to zero.

Joule vars are not globally-accessible locations. They are visible only to
a single server and completely controlled by that server, so they do not
create global synchronization problems. Furthermore, Server and var

are not primitive to Joule, but are built out of more primitive constructs.

The balance: operation instructs Fund to reveal the value of myBalance:

The value of myBalance is revealed on the distributor handed to Fund as
the argument of the balance: operation.

The withdraw: operation reveals a false result if amount is negative or
greater than the available myBalance.

The set statement, which changes the value of a var, executes concur-
rently with the If. Define introduces the intermediate acceptor
newBalance into its outer scope, so set can change myBalance to newBal-
ance even though messages sent to newBalance will wait to be
processed until the actual value is calculated.

Each evaluation expression (or guard) of the Joule If form executes con-
currently. However, only one of the guards that succeed gets to execute
its nested block of code. If, as may happen on a sequential computer
running Joule, one of the guards succeeds before another has begun
executing, the system need not even bother to start up the evaluation of
the second guard. Joule’s If is a race—even if the conditions of the
guards are not mutually exclusive, only a single guard out of those (if
any) which reveal true gets its block of code run.

If amount is negative or greater than myBalance, the result channel flag>
is set to false, meaning that the attempted transaction did not succeed.

return the current balance

op balance: balance>

• balance> → myBalance

reduce the balance by an amount if that much is available

op withdraw: amount flag>

Define newBalance

If amount > myBalance

• newBalance> → myBalance

• flag> → false

orIf amount < 0

• newBalance> → myBalance

• flag> → false
else

• newBalance> → myBalance - amount

• flag> → true

endIf

endDefine

set myBalance newBalance

The term instance variable comes
from Smalltalk; member variable
is the C++ term.

There are no global variables in
Joule. Servers may interact only
through explicit message
passing.

Fund is a simplified version of
the hierarchical bank account
server Account presented in
Chapter 6. In the hierarchical
account, each guard of the If
signals a different exception,
rather than merely setting a
success flag to false.

This gives Joule compilers on
sequential computers the
option of converting the
guarded If to a nested if—if x,
then foo, else if y, then bar.

The result port flag> is used as a
substitute for the normal action
in such a situation, which
would be to raise an exception.
Exception handling is beyond
the scope of this example; it is
discussed in detail in Section
5.7.

Fund

20 Dec 95 DRAFT 25

The deposit: request increases the value of myBalance by amount (if
amount is not negative):

increase the balance by an amount

op deposit: amount flag>
Define newBalance

If amount < 0

• newBalance> → myBalance

• flag> → false

else

• newBalance> → myBalance + amount

• flag> → true

endIf
endDefine

set myBalance newBalance

endServer

Introductory Examples

26 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

