
 

20 Dec 95 DRAFT 27

 

3.Simple Execution Model

 

This section describes a simple execution model for Joule. It is intended
to describe the rules that all Joule computations must follow, and to
give the reader an intuition of how Joule computations could actually
get work done; it is not intended to represent an efficient implementa-
tion model. This simple execution model does not include resource
management techniques or Domains (separately-executable pieces of
code). Section 9.4 presents a more complete computational model after
these concepts have been explained.

An executing Joule system consists of numerous servers sending mes-
sages to each other. Some of the servers, such as numbers, are 

 

primitive
servers,

 

 built outside or underneath Joule; they include the basic servers
from the kernel of Joule and foreign services provided externally. Exe-
cution bottoms out in these primitive servers. All other servers are

 

composite servers,

 

 built in Joule from more primitive servers; they enact
programmed flows of messages among primitive servers. To support
the recursive abstraction of servers, primitive and composite servers
have the same operational semantics so that clients cannot tell the
difference.

All references to Joule servers are made via 

 

ports.

 

 Messages are never
sent directly to a server, but rather to a port to that server. Each server
can have multiple ports to it, each with a different behavior. These dif-
ferent behaviors are called 

 

facets

 

. 

Messages sent to a port don’t necessarily get to the server immediately.
Instead, a 

 

pending delivery

 

 is made for the server receiving from that
port. Execution proceeds by completing a pending delivery to the rele-
vant server. The reception of the message by the receiving server and
the ensuing computation in response to that message is called the 

 

acti-
vation

 

 of the receiving server.

Each composite server contains a collection of ports to other servers,
and code to execute when activated with a message. The only ports
accessible during the activation of a server by an incoming message are:

• the ports contained by the activated server

• the port to the incoming message

• ports to any servers created in the activation

The only actions a composite server can take when activated are:

• create new servers whose contained ports must be selected from
the accessible ports

The execution model presented 
here owes much to the Actors 
execution model ([2], [65]).

The resource issue of who pro-
vides storage for messages will 
be dealt with in Section 9.4 in a 
future version of this manual. 
Strikingly, this particular kind 
of resource management prob-
lem is very similar to flow-
control, which has been solved 
in the context of telecommuni-
cations: Tymnet and X.25 
provide solutions, for example.

 



 

Simple Execution Model

28 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

• send accessible port as messages to other accessible ports

These laws of computation restrict information flow among servers to
message passing only; servers cannot, for example, compare ports for
identity or side-affect global variables.

These laws do not directly provide the ability to change the collection
of contained ports in the server; i.e., the server’s state. The semantics of
changeable state, so necessary for adequate modeling of real systems, is
built in the language on top of the kernel semantics (and can be imple-
mented efficiently). These abstractions (e.g., 

 

Server

 

 forms with 

 

var

 

extensions) are described in Section 5.1.

When activated, primitive servers can perform arbitrary internal com-
putation, so long as they respect these laws. They can contain ports to
other servers, and can cooperate with each other (subject to the accessi-
bility laws). They can change their internal state to include any other
accessible servers. They cannot violate the modularity of the program
by either reaching inside other servers (except cooperating primitive
servers), or by referencing servers that were not explicitly accessible.
Joule computation bottoms out by primitive servers cooperating with
each other. For instance, integer addition bottoms out when the “+”
operation is sent to a primitive integer with another primitive integer as
its argument. The receiving integer gets the bits from the argument
integer, computes a new result integer, and forwards the result channel
to it; if the argument is not a primitive integer, then the receiving inte-
ger must send a message asking the argument to perform the addition.

The idiom of simple object-oriented message sending is as follows: the
sending server, during some activation, creates a new tuple—the typi-
cal kind of server used for messages—and sends it to one of its other
accessible ports. The delivery of that tuple is then pending for the
server facet listening for messages on that port. When execution acti-
vates a server with the message, that server can then send to that
message (considered as a tuple object). This allows it to extract the 

 

oper-
ation

 

 (the name of the tuple) and its arguments, for use in further
computation. Because the tuple is a primitive server, when it receives
messages to reveal internal parts of itself, it can do so immediately
without spawning an infinite recursion of message sending.

Two other primitive server types, channels and arbiters, are used to
interconnect servers into complex systems. Primitive Joule servers
called 

 

channels

 

 have two facets, an acceptor and a distributor. The 

 

accep-
tor

 

 is for sending messages 

 

through

 

 the channel to other ports. The

 

distributor

 

 is for controlling where messages sent to the acceptor get for-
warded—messages sent to the distributor can forward the channel to
other ports. The behavior of the channel is such that, for all messages
sent to the acceptor port, a pending delivery of the message will be
made for any port to which the distributor forwarded the channel.

Sending on the acceptor of the channel is equivalent to sending through
the channel to each of the ports to which the channel is forwarded. This
equivalence is 

 

transparent:

 

 sending to the acceptor of a channel is indis-
tinguishable by the sender from sending directly to the ports of any
servers to which that channel delivers. Messages sent through the chan-
nel are also preserved, so that if the distributor forwards the channel to
any other ports, those ports will also get all the messages; a pending

An operation, in this execution 
model, is a unique token that 
can be compared with other 
tokens. They are not described 
in detail because they are 
replaced with public/private 
key pairs under the new regime 
described in the Energetic 
Secrets appendix.

To forward a channel is to for-
ward all messages that have 
been or ever will be received on 
that channel.



 

20 Dec 95 DRAFT 29

 

delivery to the new destinations will be made for every preserved
message.

Channels have private access to

 

 arbiters

 

 for choosing among messages
received. Arbiters are primitive servers that are not directly accessible
at the programmer level; they are implicitly accessed using the 

 

choose:

 

operation of distributors. Supplied with a port for results and a distrib-
utor containing messages, an arbiter chooses one of the distributor’s
messages and forwards all of the others to a newly-created channel. It
then sends to the result port a message that contains the chosen mes-
sage and the distributor to the new channel. Arbiters provide the
fundamental non-deterministic choice required for synchronizing
access to resources. For example, in trying to model a bank account, if
two clients try to withdraw the entire balance, only one can get it. Arbi-
ters are the selection mechanism for ordering requests to provide
synchronization for servers.

Channels and Arbiters and the programming techniques using them
are described in Section 5.1.

Servers perform the same role as objects in object-oriented program-
ming languages; however, they differ in that they are implicitly

 

concurrent,

 

 

 

ubiquitous

 

 (everything is a server), and 

 

uniform

 

 (all behavior
is in response to messages). Because all behavior is in response to mes-
sages, and because messages wait until their recipient can respond to
them, Joule inherently provides data-flow synchronization. Any server
can send messages on a channel even before the channel has been for-
warded to any other servers. When receiving servers are created, they
respond to all the pending messages.

The If form is built from 
Arbiters.

Because delivery of messages is 
not immediate, any delay in the 
creation of the receiving server 
is not apparent to the client.



 

Simple Execution Model

30 Joule: Distributed Application Foundations 20 Dec 95 DRAFT


