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5.Language Definition

 

This chapter presents a complete description of the present state of the
Joule language design. First, the computational primitives are
described, along with typical techniques for their use. This is followed
by a description of the syntactic forms built from those primitives to
directly support routine programming tasks. The order was chosen to
emphasize that the Joule computational primitives provide the entire
rules for normal programming in Joule. Everything else described in
this chapter can be built (at least semantically) on top of the primitive
semantics, and can do nothing that the primitives could not do.

This follows the “hourglass” architecture principle: lots of functionality
on top, lots of implementation tricks and machine specific adaptation
on the bottom, and a very narrow “waistline” in the middle with a clear
semantics that provides the rules that programmers must understand.

 

5.1. Message Plumbing 

 

The first step in understanding the building of complex systems in
Joule is to understand how programs are constructed. In Joule, pro-
grams literally get connected—much of the program design is the
creation of the interconnections between servers. This section describes
the mechanisms for managing message routing and response, and
ways to program with these Joule mechanisms that are powerful equiv-
alents to conventional programming techniques.

 

5.1.1. Sending Messages

 

The most common operation is sending a message; message sending is
used for everything from adding numbers to bidding for remote data-
base services. All values in Joule are servers, so message sending is
ubiquitous. Because it is so frequent, message sending is represented in
the syntax by juxtaposition after the 

 

•

 

 keyword. As a statement,

 

 • 

 

plus
a simple expression, followed by any other expression, sends a mes-
sage: the second expression is sent to the first expression. 

The second expression, the message to be sent, will usually be a tuple.
A tuple is an ordered list of arguments preceded by a statically-avail-
able name for the tuple, called an 

 

operation

 

, which is either an operator
or a label. The operation is followed by the argument list, an ordered
sequence of zero or more ports to servers.

Resource management pro-
gramming involves Boundaries 
as well. See Chapter 7, Boundary 
Foundations.

A simple expression is an identi-
fier, a literal, a quasi-literal, a 
tuple, or a nested expression 
within parentheses. See Chap-
ter 4, Syntax.

Any server could be used as a 
message, but tuples are the 
mechanism to support normal 
object-oriented practice. Using 
other types of servers for mes-
sages is beyond the scope of 
this section.
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In the statement

the first simple expression is just the identifier 

 

account

 

. The expression
following it is the tuple 

 

withdraw: amount result>

 

; the message sent to
the receiver is an operation named 

 

withdraw

 

: with two arguments. In
Joule, any server can be sent as a message on a port; the expression fol-
lowing the receiver can be any expression. The expression 

 

withdraw:

amount result>

 

 produces a tuple that is then sent to the receiver. The sim-
ple statement, 

 

• rcvr msg

 

, sends 

 

msg

 

—presumably a tuple—to 

 

rcvr

 

.

In most cases, there will only be a single receiver for messages on a
given channel. In this typical situation, the port to that single receiver
can be treated like a pointer to that server in traditional object-oriented
programming languages; that port is the capability to access the object.

Another pattern of use for channels is for the distributor of a channel to
be shared. Such channels are multi-casting their messages to all the
receiving servers. This works because at the distributor, messages are
not removed from channels, but merely viewed, so all receivers see all
messages. As result, there is no synchronization between receivers; they
don’t race to be the server that receives a given message. This is imper-
ative for efficient distributed systems, because such races require
expensive distributed coordination that should be written in the lan-
guage rather than as a part of it.

Each receiver acts on every message in the channel. If a channel of five
messages is received by six separate

 

 

 

ForAll

 

 

 

servers, thirty processes are
initiated. There is no synchronization among these resulting processes;
they will execute and finish in a non-deterministic order.

Also, multiple servers can send messages on the same port. Because
these senders execute concurrently, messages sent to the same port by
two different servers are completely unordered with respect to each
other—either server could have sent its message first, so receivers of
messages from that port might see the messages in either order. For
example, suppose two clients of a database, 

 

A

 

 and 

 

B

 

, send requests
from their respective machines to the database server. Even if 

 

A

 

’s mes-
sage is sent first in real time, 

 

B

 

’s message may arrive at the receiver
before 

 

A

 

’s message does (perhaps 

 

B

 

 and the server are both in Dallas,
and 

 

A

 

 is in Osaka). If 

 

A

 

 and 

 

B

 

 are not otherwise communicating about
their interactions with the database, then the only ordering that any
server in the system can observe is the ordering the database observes
when it receives the messages in a particular order.

An individual server can impose an order on the messages it sends. A
single send statement can send several messages in a guaranteed order:
receivers of the messages will see them in the order that the sender
imposes. The form 

sends two messages, a 

 

deposit

 

: message and a 

 

withdraw

 

: message, to the
server named by 

 

account

 

. The expression after each comma in a send
statement is a further message that comes 

 

after

 

 the previous messages.
This does not guarantee anything about how the messages from one

 

• account withdraw: amount result>

• account deposit: amount, withdraw: amount result>

Because the messages are 
merely conveyed from the 
acceptor to the distributor, 
senders to a channel can only 
use it to communicate with 
servers at the other end of the 
channel, not with each other. 
This means that the semantics 
of each sender depends only on 
the semantics of the server at 
the receive side, not the other 
senders. This also means that 
senders need no expensive syn-
chronization with each other.

This simple example illustrates 
the need for ordered mes-
sages—there might not be 
enough in the account for the 
withdrawal until after the 
deposit.



 

Message Plumbing

20 Dec 95 DRAFT 39

 

sender will be interspersed, if at all, with messages from any other
servers.

Ordering messages among more than a single sender requires a differ-
ent use of the same mechanism. The 

 

then

 

 extension to the send form
forwards all the messages in a distributor to the receiver, with the guar-
antee that they will be received after the original messages.

Any number of ordered messages can be sent before the 

 

then

 

 extension;
the messages before the 

 

then

 

 are sent in the same order in which they
appear in the program listing, while those in 

 

then

 

’s distributor are guar-
anteed to be delivered after them.

 

5.1.2. Local Values and Channels

 

The 

 

Define

 

 form is the simplest mechanism for binding identifiers to
ports locally. 

 

Define

 

 embodies two mechanisms: it binds identifiers to
ports and, where necessary, it creates channels. 

The simple statement

binds 

 

amount

 

 to the port to the number 

 

5

 

 within the scope in which the

 

Define

 

 statement occurs.

 

Define

 

 also creates a channel and makes the distributor of the channel
visible in the inner scope of the 

 

Define

 

. The name of the distributor is
generated by appending “>” to the defined name. Thus, the distributor
corresponding to 

 

amount

 

 above would be 

 

amount>

 

. 

As described in Chapter 3, messages sent on the distributor control the
routing of messages sent through the channel (via the acceptor). The
block nested within a 

 

Define

 

 form can forward the channel to some
server and thus determine the server to which messages sent on the
acceptor will be delivered, or it can pass the distributor to some other
server to allow it to determine the value of the distributor. The above
example, 

 

Define

 

 amount = 5

 

 

 

endDefine

 

, can be rewritten to demonstrate
local forwarding of the distributor.

The existence of an intermediate channel is completely invisible to
either the clients of 

 

amount

 

 or the server 

 

5

 

 because channels are trans-
parent; messages sent through channels act exactly as if they had been
sent directly to the servers to which the channel is forwarded. In effi-
cient compilers, the two different definitions of 

 

amount

 

 will produce
identical (and efficient) code.

The “

 

→

 

” operation with a single port as its argument tells the distribu-
tor to forward to the supplied port all messages ever received through

 

(Assuming that the “from-seller” channel already exists:)

 

• account deposit: amount

 

then

 

 from-seller>

 

The seller’s messages are received after the deposit operation.

 

• from-seller withdraw: amount result>

 

Define

 

 amount = 5 

 

endDefine

 

 

 

Define

 

 amount 

• amount> 

 

→

 

 5

 

endDefine

 

 

Ordered message sending is 
actually implemented using 
ordinary tuples to provide the 
order.
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the channel. Since messages sent through a channel wait at the chan-
nel’s distributor, messages can be sent before the channel has been
forwarded to all its receivers. The delay in delivery is invisible to the
message senders because message delivery is never immediate—a
message sent from one machine to another takes time to cross the net-
work. Message plumbing and dataflow synchronization allow
programs to be built without immediacy requirements.

This simple example demonstrates passing the distributor to another
server to allow that other server to determine the receiver of messages
sent on the acceptor.

This example passes the distributor, 

 

result>

 

, as an argument to the 

 

bal-

ance

 

: operation to 

 

account

 

. This allows 

 

account

 

 to forward the
distributor to the server which is its balance, and so bind the result to
the balance of the account. All messages, past or present, sent to 

 

result

 

will arrive at the server that is 

 

account

 

’s balance.

The statements within a Joule form all execute concurrently. The linear
form of the textual representation of a Joule program may give the
appearance of sequential execution, but this is emphatically not the
case. As a result, 

 

Define

 

 statements at the same level of scoping can use
one another’s acceptors in their definitions. This was used in the ver-
bose form of the 

 

Dispatcher

 

 example in Section 2.2:

These three 

 

Define

 

 forms could be in any order without changing the
operation of the program.

Also, because the outer bindings are visible to inner scopes, the name
being bound in a single 

 

Define

 

 can be used in defining the binding of
the name. This is commonly used in the definition of recursive func-
tions. The following toy example makes the syntax clear:

The acceptor 

 

ones

 

 now delivers to a tuple named 

 

foo:

 

 which has two
arguments, namely the number 

 

1

 

 and a tuple named 

 

foo:

 

 which has
two arguments, namely the number 

 

1

 

 and (effectively) a tuple named

 

foo:

 

 which has two arguments...

Mutually recursive definitions are also supported: a single 

 

Define

 

 form
can bind multiple names (separated by commas). The distributors for

 

The following passes the distributor to another server

 

Define

 

 result

• account balance: result>

 

endDefine

 

 

 

Define

 

 size

• outs count: size>

 

endDefine

 

 

 

Define

 

 index

• Random below: size index>

 

endDefine

 

 

 

Define

 

 out

• outs get: index out>

 

endDefine

 

 

 

Define

 

 ones

• ones> 

 

→

 

 foo: 1 ones

 

endDefine
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those names are visible in the entire statement, so each definition can
use the acceptors or distributors of the other definitions.

The nested block of code under 

 

Define

 

 (and any further nested block
within it) can use any or all of the ports thus 

 

Define

 

d; this example uses
them all. 

Finally, the simple form of definition (

 

Define

 

 

 

acceptor = expression

 

 

 

end-

Define

 

) and the more complex form (with a nested code block) can
coexist. The distributor created, and thus all messages delivered to it,
are forwarded to all of the results of the definitions. Logging is a simple
example that starts to use the power of message plumbing:

The 

 

Logger

 

 here is just some server that records all the messages that
arrive on 

 

amount>

 

. The messages sent on 

 

amount

 

 are sent to both the
number 

 

5000

 

 and whatever internal server the 

 

Logger

 

 server started.

 

5.1.3. Composite Servers

 

The 

 

ForAll

 

 form is the foundation for building composite servers. When
a 

 

ForAll is executed, it creates a new composite server that will invoke
the same block of Joule code for every message that it receives through
a particular channel.

The new server created by the above ForAll form will activate body once
for every message sent through in. The identifier msg will be bound to
the message in each independent activation. The new server will con-
tain the ports bound to visible identifiers defined outside the nested
body but used within it. When the new server is activated, it can create
new servers (using ForAll for example), and send messages, following
the accessibility restrictions described in Chapter 3, the execution
model.

Because servers created with ForAll are not allowed to change the set of
ports they can access, they cannot remember anything, and cannot
implement (by themselves) servers with mutable state. They are the
foundations for immutable servers such as complex numbers and pro-
cedures. For instance, the introductory example Dispatcher (Section 2.2)
that randomly distributes messages among multiple output ports:

Define population, growth

mutual-recursion :: population growth population> growth>

endDefine 

Define amount = 5000

Logger record: amount>

endDefine 

ForAll in ⇒ msg

body
endForAll 

Server Dispatcher :: in> outs

• in> → msgs

ForAll msgs ⇒ message

The bindings of the distributors 
hide the bindings of the accep-
tors, so in

Define a, a>

body 

endDefine 

the body will see two distribu-
tors, a> and a>>, 
corresponding to a and a> 
respectively.
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could be expanded to:

The first part of the example is an expansion of the simple use of the
Server form—for every tuple, execute the nested body of code in a
block with in> and out bound to the two arguments of the incoming
tuple. This is clearly an oversimplified variant of the expansion; it has
no error checking, it requires two operations to get all the parameters,
and so forth. However, it does serve to show how the more powerful
forms in the language can be semantically defined in terms of the com-
munications primitives and the primitive servers.

5.1.4. Making Decisions

As mentioned in the execution model, decisions are made by Arbiters.
An Arbiter chooses among the messages it receives. Supplied with an
acceptor for results, and a distributor containing messages, it chooses
one message, and creates a new channel to which are forwarded all the
messages not chosen. It then sends to the supplied acceptor a message
that contains the chosen message and the distributor to the new
channel.

Decisions get made by Arbiters in several different circumstances. For
Server, Arbiters select an ordering for unordered sets of messages—
choose one message, process it, make another Arbiter, choose the next
message, and so on. For the If form, Arbiters select the branch to take in
an If form with multiple independent branches whose guards are all
true. Other Joule forms use Arbiters similarly.

The Arbiter concept exists primarily as an aid to intuition about deci-
sions—Arbiters don’t necessarily ever exist in the implementation or as
objects in the programming language. Arbiters are created by channel
distributors when they receive the choose: message. The Arbiter
chooses a message from the channel, and forwards the rest of the mes-
sages to a new channel. 

The channel to which the choose: is sent may have multiple receivers;
its content remains unchanged. Multiple Arbiters on the same channel
choose independently: they could choose the same message or they
could choose completely different messages. These two principles com-
bine to avoid the need for any synchronization or coordination between
multiple receivers. The multiple receivers can choose messages, for-
ward messages, and so on, without needing to synchronize with other

Define index = Random below: (outs count:) endDefine

• (outs get: index) message

endForAll 

endServer 

ForAll Dispatcher ⇒ tuple

• in> → msgs

Define in> = (tuple get: 0), outs = (tuple get: 1) endDefine 

The above parameter extraction is merely suggestive.

Now the body of the procedure, which also uses ForAll

ForAll msgs ⇒ message

Define index = (Random below: (outs size)) endDefine 

• (outs get: index) message

endForAll 

endForAll 

This doesn’t properly check 
that the operation is “::”.
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receivers on the same channel. As a result, the only synchronization
necessary and the only communication possible are between senders
and receivers. This simplifies the semantics of the language and the
implementation—particularly in distributed systems in which
synchronization is expensive—without reducing the power at all. Pro-
grammers can build any synchronization mechanisms they desire from
these primitives.

5.1.5. Making Decisions Easier

Though the choose: operation is the simplest mechanism, the ForOne
form is a much easier way to understand Arbiter behavior. ForOne cre-
ates a new server that will execute a block of code for exactly one of the
messages it receives. ForOne non-deterministically chooses one of the
incoming messages (using choose:) and defines a new channel that con-
tains the rest of the messages. (The original channel may have multiple
receivers; its contents remain unchanged.) This “rest” subset can be
redirected to other servers. The block of code in the ForOne server will
have access to not just the message but also the distributor for a channel
of the rest of the messages; i.e., all messages not chosen. As with ForAll,

ForOne defines a port for incoming messages, while one and rest> are
identifiers that will be bound in the nested block when that block is
activated for a chosen message. The ForOne can expand to a use of the
choose: message and a procedure

The choice procedure is just to hide the extraction of the chosen mes-
sage and the distributor with all the other messages. The choice
procedure could expand further out to a ForAll and explicit extraction of
one and rest>.

5.1.6. Receiving with ForOne

ForOne is suitable for the definition of mutable servers. The server
chooses one message with ForOne, computes a new state based on that
message, and recurs with that new state on the rest of the messages in
the distributor. This use of ForOne imposes a particular full-ordering on
the partial ordering of messages sent on the channel, properly synchro-
nizing access to the mutable state of the server. 

Using choose: to provide a full ordering for a partially ordered set
requires choosing a message, processing it, and then choosing further
messages. The ForAll form is the primitive that allows code to be used
more than once, so it will be used (inside of Server) to invoke the
choose: as many times as necessary. When a Server form has mutable

ForOne in ⇒ one rest>

block

endForOne 

Define in

• in> choose: choice

Server choice :: one rest>

block

endServer 

endDefine 

Receiving with choose: or For-

One subsumes the Actors 
computational model, which 
requires the semantically more 
complicated become operation.
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state, it expands to a use of choose:. This can be seen by expanding a
subset of the Fund example:

which could expand to

The Define Fund creates the Fund channel. Inside the definition is the
nested procedure, Fund-recursion, that implements the Fund server. The
arguments for that procedure are the state variables for the server and
the incoming request channel—myBalance gets initialized to 0, the
input stream is initially Fund>.

The Fund-recursion procedure immediately waits (using choose:) for a
tuple to be sent to Fund. When a tuple is received, the expansion here
uses a Switch form to dispatch to appropriate code based on the name
(or operation) of the incoming tuple and its arguments. The code for bal-
ance: (called the balance: method) is the supplied code plus a recursive
call to the Fund-recursion procedure to process the rest of the messages
sent to Fund. In each recursive call, the method could call Fund-recursion
with a completely different amount, thus changing the state of the
server Fund from the perspective of all its clients. A simple example is
the following method that would zero the balance of the Fund.

The clear: method just sets myBalance to 0. The expansion is just
another clause of the Switch form used for dispatching on the incoming
message.

Server Fund

var myBalance 0

op balance: result>

• result> → myBalance

op deposit: amount success?>

...

endServer 

Define Fund

• Fund-recursion :: 0 Fund>

Server Fund-recursion :: myBalance in>

• in> choose: choice

Server choice :: operation rest>

Switch operation

case balance: result>

• result> → myBalance

• Fund-recursion :: myBalance rest>

case deposit: amount success?>

...

endSwitch 

endServer 

endServer 

endDefine 

op clear:

set myBalance = 0

case clear:

Fund-recursion :: 0 rest>

The real expansion of the Server 
form is complicated by han-
dling message ordering and 
multiple input channels. It will 
not be presented in this 
document. 

For a more detailed description 
of recursion, see Section 5.6.
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In response to the clear: message, the call to Fund-recursion says to pro-
cess further messages in a Fund that has a zero balance.

5.2. Methodical Servers

Methodical servers are like objects from traditional object-oriented pro-
gramming languages: they respond to a specific repertoire of messages
which each invoke a different behavior, called a method. For well-
defined servers, the set of messages to which they respond, called their
signature, satisfies a contract that clients can count on. Some elements of
the contract can be specified in the language; these are captured in
machine-verifiable ways in definitions of signatures called Types. Other
elements are defined at a human level of understanding; these are cur-
rently relegated to comments. The Type form describes the specification
to which methodical servers of that type must conform; the Server form
describes a single implementation meeting that spec. This section pre-
sents the tools for defining servers and their types.

While many languages support the equivalent of methodical servers,
few support non-methodical servers such as transparent forwarders.
Non-methodical servers respond generically to messages, passing
them through to other servers or processing them without regard to the
particulars of each message. Chains of non-methodical servers typi-
cally terminate at a methodical server which provides the semantics to
clients of the server. In addition to the general support for message
plumbing (all of which produces non-methodical servers), the Server
form supports the definition of methodical and partially methodical
services.

The Server form supports several object programming techniques,
many of which are abilities enabled by the flexibility of communication
in Joule:

• immutable servers—servers that don’t change state, such as pro-
cedures and complex numbers

• mutable state—standard mutable servers, but designed to work
properly in a highly concurrent environment

• partially ordered messages—represents the potential concurrency
among client requests

• multiple facets—Servers can have multiple input channels with
different behavior on each. This supports private method groups
and servers that present different facets to different clients (such
as channels do).

• non-methodical servers—Servers can respond to messages gener-
ically, logging them, forwarding them, animating their delivery in
a debugger, etc. 

The Type mechanism supports

• compile-time implementation checking—Servers that claim to
implement a type get checked at compile time.

• run-time checking—Servers that allege to be of a certain type can
be verified to implement that type.

• default implementations—Types can describe parts of their inter-
face in terms of other parts of their interfaces. These descriptions
act as default implementations and provide further definition of

Put another way, Type forms 
describe the “what” of method-
ical servers, while Server forms 
describe the “how”.
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the contract that the type abstractly represents.

• inheritance—Types can inherit from other types. We believe this
simpler mechanism, combined with object facets (see Section
5.2.2) will provide all of the power associated with implementa-
tion inheritance while avoiding some of its problems. 

5.2.1. Syntax

The Server form defines a single server. To create multiple instances of
a particular kind of server, its definition can be nested inside another
server; the containing server can then create a new instance of the con-
tained server every time it is called. The syntax of the Server form is

The identifier following the Server keyword is bound in the outer scope
to a port to the newly created server. Following the identifier is an
optional method definition. This is primarily to conveniently support
procedural servers. Method definitions will be described below. Fol-
lowing the optional method definition is the declaration of any mutable
state for the server. The var declarations create the instance variables to
represent this state. In this, var extensions act like the Define form—the
identifier is bound either to the optional expression or to an acceptor
through a channel that gets connected to an initial value in the nested
body. The instance variables are only visible within the body of the
server definition. Methods in servers with mutable state can rebind the
identifier to other ports.

The King server might be an element of a Joule chess program, with
instance variables describing its position and status:

Production Production Definition 

server Server param {method}? {var}* ops {facet}* 

endServer 

var var {param | param = opExpr},*

block

ops {implements Identifier}? 

{op method}*

{otherwise param

block}

method {pattern}or+ 

block 

{change

block}*

change to Identifier {opExpr},+

| set {Identifier = opExpr},+

facet facet param ops

Server King

var myPosition = K1

var check? = false

op move: newPosition

Define resultPosition

If (rulebook allow: king myPosition newPosition)

• resultPosition> → newPosition

...

set myPosition = resultPosition

op ...

endServer 

The syntax and type system 
will be extended to allow 
parameter types and local bind-
ing types to be declared.

In BNF representations, the 
construct {bar}foo+ means “one 
or more instances of bar, sepa-
rated by foos.” For example, 
{pattern}or+ means one or more 
patterns separated by ors. The 
full BNF is presented in Chap-
ter B, BNF for Joule Syntax.

The instance variables in serv-
ers not actually locations like 
variables in C; for instance, 
ForAlls nested in a server 
method will see an unchanging 
snapshot of their containing 
server’s state.
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5.2.2. Facets

Servers may have many facets—named channels on which they receive
and respond to messages according to some contract. The identifier that
follows the Server keyword names the primary facet of the server.
Other facets, and thus other named input ports, are introduced with the
extension keyword facet. The identifier following a facet keyword is
like the identifier after the Server keyword: it names a newly defined
port in the outer scope of the Server form. The method definitions for
the primary facet appear after the instance variable declarations; for
other facets they follow the facet declarations. Primary and secondary
facets are semantically equivalent.

Before the method definitions in a facet there can be an implements dec-
laration naming which Type the facet satisfies. The type named in an
implements extension must be a type defined with the Type construct
specified below. A facet with an implements declaration must imple-
ment all the methods specified by that type except for methods whose
Types define default implementations; the default implementation will
be used if the method is not redefined by the facet. A facet may imple-
ment additional methods that are not part of the declared Type. Only
one pattern is allowed for a given operation name.

After the optional type declarations come the method definitions.
Method definitions are introduced with the extension keyword op,
except for the optional method definition immediately following the
primary facet declaration.

Method definitions begin with a pattern against which incoming mes-
sages are matched. Patterns are prototypes for the corresponding
message: an operation name followed by named parameters which will
be bound to the corresponding arguments in the message. For each
message sent to the server, whichever method pattern is matched by
that message is the one activated for it. Following the pattern in each
method is the nested block of code to run for each activation.

5.2.3. State Change

Methods in servers with mutable state can include the extensions set
and to which change the server’s state. A method can have any number
of these extensions, in any order. 

The set extension designates an instance variable (previously declared
with var) and an expression to which the instance variable should be
rebound. The to extension designates an instance variable and a mes-
sage to send to the current value of the instance variable. Messages sent
with to are ordered sends: after the value of the instance variable
receives the message, the instance variable is rebound to a new port
containing messages guaranteed to be delivered after the message that
was sent with to. As a result, messages sent to an instance variable dur-
ing an activation are guaranteed to be delivered before messages sent to
the same instance variable in a later activation.

The to extension can be defined in terms of the set extension and
ordered message sending with then. The following example is part of

Most servers only have a pri-
mary facet. The most common 
kind of secondary facet is the 
private facet, a facet not 
exposed beyond the procedure 
that creates the server. Private 
facets are used for methods that 
should not be available to 
clients.

For patterns that match a vari-
able number of arguments, see 
Appendix C, Optional 
Arguments.

A single method can actually 
respond to more than one mes-
sage pattern using the or 
extension. Details of or will be 
presented in future versions of 
this document.
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an account server that contains a Fund server and implements methods
in terms of it. 

is equivalent to 

The first implementation just sends ordered messages to the contained
Fund server. The second example takes exactly the same actions: the
deposit: operation is sent to myFund with the amount, and an implicit
channel of messages is created with then—messages guaranteed to
arrive after the deposit: operation is received by myFund. Thus, it is
guaranteed that the subsequent send of balance: to the fund is received
by the fund after the deposit gets made.

The to extension is also used to send messages to the server itself. Joule
supports a distinction between inner and outer selves that is not possi-
ble in sequential object-oriented languages. Sending to the inner-self
means sending messages to a facet that will be processed before any
further messages from the outside are processed. These get used when
the messages to self are part of maintaining the invariants of the server.
For example, the move-window: operation for a window in a window-
ing system might erase the window, change its coordinates, then draw
the window again; no client messages should be able to get between the
erase: and redraw: operations because they could easily break invari-
ants that assume the window is currently displayed. A message to the
inner-self is sent by using the to extension with one of the facet names
as the designated receiver of the message.

Sending to the outer-self is accomplished by sending messages to a
facet port just as if it were a regular port (without using the to exten-
sion). The outer-self is for the server to send messages to one of its
facets that should be interpreted as if it came from a client. For example,
deleting elements of a collection while iterating over its elements
breaks most object-oriented systems (because most iteration schemes
depend on representation details that are altered by deletion). If the
deletion operation is sent to the outer self, it won’t be received until the

Server account ...

var myFund ...

deposit amount and reveal the new balance.

op deposit-balance: amount success?> balance>

to myFund deposit: amount success?>

to myFund balance: balance>

...

endServer 

Server account ...

var myFund ...

deposit amount and reveal the new balance.

op deposit-balance: amount success?> balance>
Define fund'

• myFund deposit: amount success?>

then fund'>

endDefine 

set myFund fund'
to myFund balance: balance>

...

endServer 
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iteration is finished, allowing the deletions to avoid interfering with the
efficient implementation of iteration.

The optional block following a state-change extension executes with
the server in the state it possesses after the variable has been rebound.
In the nested blocks, passing an instance variable as an argument or
sending it as a message refers to the new value, not the old value. A
simple example is adding the deposit-balance: message to the Fund
server: 

The myBalance reference that is revealed on balance> is the value of
myBalance after the deposit has increased the balance.

Scoping is different for these state-change extensions. The entire
method, including all the state change extensions, is a single scope,
with the exception that instance variable definitions refer to different
values after state change extensions. This is more consistent if state
change extensions are viewed as extensions to the op extension rather
than as extensions to the Server form itself.

The optional otherwise extension follows the method definitions for a
facet. It supports non-methodical and partially-methodical servers. If
an incoming message matches none of the methods for a facet, then, if
that facet has an otherwise extension, it is invoked with the identifier
bound to the unrecognized message. If there was no otherwise exten-
sion, the not-understood: exception is signalled. See Section 5.7 for
details on exception handling.

5.2.4. Type

The syntax for declaring types is very similar to the syntax for defining
servers. Types can not have variables or otherwise clauses. Types form
an inheritance hierarchy, so they have the optional super extension to
specify the parent type. The standard root of the type tree is Basic, a
type that defines a very simple protocol appropriate for most servers;
however, servers need not be subtypes of Basic. The syntax for Type dec-
larations is:

Everything after the pattern of a method is the optional default imple-
mentation. The messages defined in a type declaration are not
messages that the type itself responds to; types respond to a fixed set of
messages for asking about their protocol and such. The only change
extension allowed in default implementations is the to extension. It can

Server Fund ...
deposit amount and reveal the new balance.

op deposit-balance: amount success?> balance>

to Fund deposit: amount success?>

• balance> → myBalance

Production Production Definition 

type Type param 

{super Identifier}? 

{op {pattern}or+ 

block 

{to name {ex},+

block}*}* 

endType 

The Basic type is defined along 
with other standard types in 
Section 5.8.

Future versions may extend the 
type system with multiple 
inheritance of types.
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be applied with either Self to send message to the inner-self, or Super to
invoke overridden default implementations in the parent Type.

The following example defines the type for the simple Fund example
presented in Section 2.5—an account in which money is not conserved,
but with which trusting processes can keep track of money. 

The Type statement introduces the type named Fund into the type
namespace. The super line says that facets that implement type Fund
must also implement type Basic. Lines beginning with op declare mes-
sages to which instances of the type will respond. Following the op is
the message pattern that will be matched, typically an operation fol-
lowed by arguments.

5.2.5. Nested Servers

Servers can be nested. The simplest use of this is to make a procedure
that will produce instances of a server implementation. The Fund
example might instead be:

Each invocation of make-fund with a balance produces and reveals a
new and independent Fund server.

To the nested Server, the instance variables of the parent are unchang-
ing; they remain bound to the same port as when the nested server was
created. This is of course also true for nested ForAlls.

5.3. Procedures

Procedures in Joule are servers that respond to the procedure operation
convention—any message named with a double colon (“::”), the short-
est message label. The Server form supports the easy definition of
procedures with the optional method definition immediately following
the primary facet name. For procedures, the primary facet name, the
identifier following the Server keyword, is the name of the procedure.
Procedures can be defined using op extensions. Defining a method on
the first line of the Server form is a syntactic convenience; a method so
defined is no different than one defined using an op declaration.

Because Joule has true lexical scoping, all servers including procedures
can be defined within other procedures. This allows the definition of

Type Fund

super Basic

op balance: balance>

op withdraw: amount flag>

op deposit: amount flag>

endType 

Server make-fund :: balance fund>

• fund> → Fund

Server Fund

var myBalance = balance

...

endServer 

…

endServer 
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private helper procedures inside methods of a more complex server, for
instance.

5.4. Functions and Expressions

The Joule syntax supports expressions, primarily as a convenience for
common math expressions and tests for conditionals. This section
describes how to implement result-revealing functions using the Server
construct and passing in a distributor to return the result. It also
describes how Joule expressions that resemble expressions in other lan-
guages (“3 + 5”) expand into more primitive forms.

The “native” technique for using operators in Joule is the explicit send-
ing of the operator request. For example, in the following statement

passes the distributor small-enough?> in a message to 24, which for-
wards small-enough?> to the result of the inequality (in this case, the
Boolean server true). The distributor for the result was specified explic-
itly; the corresponding acceptor delivers its messages to the result.

However, operators may also be used in an expression context—that is,
anywhere that a Joule expression would occur; for example, as the tar-
get of a send, or as the argument to a forward operation. Many
examples of this type of usage have already been shown; consider the
statement • sum> → 3 + 4. Any operator used in such an expression
context is assumed to be sending an operation with two arguments: the
expression immediately to the right of the operator, and an implicit dis-
tributor for the result. The operator expression is replaced with the
acceptor for the implicit channel. One could accomplish the same thing
by first defining an intermediate result channel t1 and executing the
statements

In practice, this looks as if “3 + 4” becomes an acceptor to which mes-
sages can be forwarded. An operator expression like “3 + 4” can then be
used as an argument to operations without the need to explicitly define
channels for intermediate results. Parentheses can be used to force the
expression-like evaluation of tuples that are named with labels instead
of operators, as in

The Factorial procedure was presented and explained in Section 2.4.
The Server form for Factorial looks like this:

• 24 <= 60 small-enough?>

• 3 + 4 t1>

• sum> → t1

• should-be-120> → (Factorial :: 6)

Server Factorial :: number result>

If number <= 1

• result> → 1

else 

• result> → number * (Factorial :: number - 1)

endIf 

endServer 
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The final argument result> is a distributor for a result channel. When-
ever the server is sent a message in an expression context, the Joule
compiler automatically creates the implicit channel and supplies that
distributor as the final argument. This is completely transparent so far
as the called server is concerned; there is no difference between a dis-
tributor supplied explicitly by the programmer and one supplied
implicitly by the compiler.

5.5. Conditionals

Joule supports several constructs for making decisions. The most famil-
iar is If, similar to Dijkstra's “guarded-if” in which each condition
expression, called a guard, is executed concurrently. The If construct is
extended with generalized pattern matching, incorporating some ideas
from logic languages. The second construct is Switch, much like C’s
switch statement, in which an input value (typically) is matched concur-
rently against a set of patterns, and the code associated with the
matching pattern is executed. Finally, a process can decide among the
results of several input processes by having their outputs race to be the
first producer of a value. This is the fundamental semantics underlying
all the conditional constructs in Joule, and is sometimes useful directly.

5.5.1. If 

If is similar to Dijkstra's guarded-if construct. The If is a series of clauses
which each have a guard and a block of code. The If construct executes
all the guards concurrently. Of the guards that evaluate to true, the If
construct executes the block of exactly one of them; the guards that
evaluate to true race, and only one of them can win. The If construct also
has some special clauses (like else) with implicit guards that participate
in the same race. Here is a simple example:

An If form is a sequence of guarded clauses and a final optional else
clause. Guards execute concurrently, and their execution is total; that is,
they will either be executed to completion or not executed at all (that is,
the compiler is allowed to rewrite the decision tree). The guards race to
win the If and have their associated block of code run; the If will only
run the block of code of the winner (if any) of the race. 

There are two kinds of guards: expressions and pattern matches. An
expression is just an operator expression that must evaluate to true to
win the race. A pattern match is a simple expression, the target, fol-
lowed by “~” followed by a pattern expression (a quasi-literal). If the
pattern expression contains free identifiers, they will be bound to the
corresponding part of the target in the associated block of code for the
pattern match guard. The guard succeeds by successfully matching the
pattern. The details of underlying pattern matching implementation

A simple example of the If construct

If withdrawal > balance

• withdrawal report-bounce:

orIf withdrawal < 0

• account bad-arguments: withdrawal
else 

• account withdraw: withdrawal

endIf 
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will not be discussed in this document. The basic implementation is
that the pattern match syntax translates to sending the match: message
to the target with an argument for each free variable and an extra result
argument for the success flag that will participate in the race. Thus, pat-
tern match guards also evaluate to true. Finally, the else clause is true
only if all the guards are false. Therefore, the else doesn’t need to partic-
ipate in the race.

The If will commit to one of the guards that reveals true. It may not be
the first guard because there isn’t any well-defined notion of “first”
except “the one chosen by the If”: in a distributed system, the first guard
to evaluate to true may be on a machine remote from the commit loca-
tion, and by the time its success is communicated to the rendezvous
site, a closer guard committed and won the race. If two guards evaluate
to true simultaneously, the implementation will choose nondeterminis-
tically. In accord with totality, any guard computations not already
started when the  If  commits  may never  be  s tarted by the
implementation. 

The BNF for the If construct is as follows:

Before the guards have computed enough to have revealed a value, the
If is suspended. If all the guards evaluate to false, and there is no else
clause, the failed-if: exception is signalled. See Section 5.7 on page 56 for
details on exception handling.

As this example shows, the elseIf extension is exactly equivalent to an
else extension containing a nested If: 

5.5.2. Switch 

The Switch construct is used to choose one of several blocks of code
based on pattern matching against a single target. This is a convenience

If opExpr

block

{orIf opExpr

block}*

{elseIf opExpr

block

{orIf opExpr

block}* }*

{else 

block}?

endIf 

If ex1

block1

elseIf ex2

block2

else 

block3

endIf 

If ex1

block1

else 

If ex2

block2

else 

block3

endIf 

endIf 
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for large scale pattern matching, and is used to dispatch on messages in
the expansion of the Server form. The syntax for the Switch form is: 

The argument of the Switch statement is an expression that reveals the
target of the pattern matches. The argument of each case or or extension
is the pattern to be matched. The pattern is a quasi-literal, just as in the
pattern-match If guard. Any free identifiers in the pattern will be bound
to the corresponding substructure of the target in the block of the pat-
tern that wins the switch. The otherwise clause will be run if all of the
pattern matches fail. As with If, if no pattern matches and no otherwise
extension is supplied, the failed-switch: exception is signalled.

This example of the Switch statement is from the meta-interpreter for
Joule. A meta-interpreter is an interpreter for the language written in
the language.

The interpreter uses tuples to represent program structure, and a Switch
form to match the incoming tuple and extract the arguments. It then
takes the appropriate interpreter action to execute the particular state-
ment type.

5.5.3. Race

Race isn’t a construct, but rather a way of using the primitive choose:
facilities for making decisions in a program. Several clients can send
their results to the same acceptor. The choose: message, sent to the cor-
responding distributor, then picks exactly one of the incoming results
so that it can be operated on. This is the primitive in the language for
choosing among alternatives. The other decision constructs are imple-
mented with it, but it is sometimes directly useful.

5.6. Iteration 

Joule supports iteration through recursion. Simple functions can recur
by calling themselves with other arguments. If a result argument is
passed through the recursion, then the nested call can determine the
result for the computation.

Switch opExpr 

{case pattern 

{or pattern}* 

block}* 

{otherwise param

block}? 

endSwitch 

Switch statement

case define: names block

• interpret :: block (env attach: names)

case send: recT tupleT

• (env lookup: recT) (env lookup: tupleT)

...

endSwitch 

Reveal the new total after interest on 'principal' accumulates at 'rate' for 'units' time 

units.

Server acc-interest :: principal units rate total>

If units > 0 
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This acc-interest server first tests to see whether any more time-units of
interest accumulation are necessary. If so, it computes the principal plus
interest for one time-unit. It then calls itself with the new intermediate
total, with one less time-unit to compute, and with the original argu-
ments of the interest rate and the result port total>.

If no more time-units need be computed (because units is zero), then the
principal accumulated so far is the total accumulated for the supplied
number of time-units. The result is revealed by forwarding total> to the
accumulated amount. The total> argument was passed unchanged
through all the recursions; it still represents the distributor to be for-
warded to the answer to the computation.

A more complicated example demonstrates using recursion inside of
another computation to provide all the facilities of loops. This style of
recursion is similar to named-let in Scheme.

This example server reveals two results: the interest, and the principal
plus the interest. The trick that will become familiar is the invocation of
the loop followed by the definition of the loop. The statement loop ::
principal units sets up the initial values for the changing parameters of
the loop. As in acc-interest, the loop procedure checks to see if any more
iterations are necessary. If so, it computes the new principal and
remaining iterations and calls the loop procedure recursively, not the
outermost procedure. Unchanging parameters like rate are just used
freely in the loop. When the loop has been called recursively once for
each time-unit, the else clause is called (because units will be 0) and
total> gets forwarded to the accumulated principal (named sofar), and
interest> gets forwarded to the total minus the principal. Because both
total> and interest> are lexically visible from the original context of the
interest procedure, they don’t need to be passed through each iteration
of the loop.

Define sofar = principal * rate + 1 endDefine 

• acc-interest :: sofar (units - 1) rate total>

else 

total> → principal

endIf 

endServer 

Reveal the interest and total after interest on 'principal'

accumulates at 'rate' for 'units' time units.
Server interest :: principal units rate interest> total>

• loop :: principal units

Server loop :: sofar units

If units > 0 

• loop :: (sofar * rate + 1) (units - 1)

else 

• total> → sofar

• interest> → sofar - principal

endIf 

endServer 

endServer 

For efficient iteration-by-recur-
sion, Scheme specifies that 
implementations must be tail 
recursive. This optimization 
happens naturally in the Joule 
semantics: the recursive call is 
simply passed the result port; 
no stack is ever created.
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5.7. Exception Handling

This section provides a high-level description of how Joule handles
exceptions. Many exceptions are the result of improper arguments or
unusual but semantically sound conditions. An example already
shown includes signalling an exception when an attempt is made to
withdraw too much money from an account. Exceptions are largely
used for error reporting, but they can also be used for reporting condi-
tions that are not errors, but are merely sufficiently unusual to warrant
attention.

5.7.1. Normal Exceptions

Exception handling is a complicated business in sequential languages
because it combines communication about the state of the computation
with a transfer of control. The problems arise from the transfer of con-
trol. Being concurrent, Joule does not experience these problems:
exceptions are reported and execution of other branches of the same
computation continues. This is appropriate because those other
branches might already have completed by the time the exception was
raised (they can’t be dependent on the exceptional computation or they
would have suspended waiting for its result); terminating them would
merely result in more confusion.

The exception port is implicit and dynamically bound: it follows the
message-sending path, so raising an exception will report the exception
to the caller of a server. The syntax for raising an exception is very
much like message sending:

The exception can be any message. Exceptions are caught by a construct
that rebinds the implicit exception port to a new port. As a result, the
redirector can do anything with the exceptions, including drop them,
terminate computations because of them, compute the failed computa-
tion another way, or pass the exception to further exception handlers.
Here is an example of redirecting the exception port:

Raise an exception named 'overdrawn' with balance as an argument. Raising 

exceptions is like sending messages to a Signal server. Any message can be 

sent. 

Signal overdrawn: balance 

Recover from a a failed money transfer

Handler bounce?

• myAccount deposit: customer-payment

endHandler 
• service provide: customer

Here's the exception handler to suspend service and get the money from the customer 

some other way in the case of a bounce. Otherwise it just forwards the 

exception back to the customer and goes on.

Server bounce?

op insufficient-funds: amount

Define continue? = service suspend: endDefine 

• finance collect: customer amount continue?

otherwise exception

KeyKOS distinguishes 
between errors that would be 
wrong merely on the basis of 
the operation and server type, 
and those errors due to the cur-
rent state of the server.
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In the example above, the Handler statement redirects all exceptions
occurring within its nested body to the server named bounce?. The new
exception handler is defined below the provision of the service to the
customer. In this contrived example, if the customer payment is an
account with too little money, the insufficient-funds: exception is sent to
the bounce? server which suspends the service (returning a continue?
flag), and initiates collection processes on the customer. All other excep-
tions are just passed through to the next outer exception handler
because that’s the dynamic context of the signal statement. Only the
statements contained within the Handler form have their exceptions
intercepted.

This structure of exception handling takes advantage of all the other
tools built to manage messages: Server-based message dispatch, mes-
sage plumbing to allow supplied handlers, etc. Types are even quite
useful in this scheme, as every operation could declare a Type for the
set of exceptions that might be raised. Typed exception handlers would
then guarantee that they caught all the appropriate exceptions.

The syntax for the exception handling tools is:

A HandlerTap is like a Handler except that all exceptions are also auto-
matically forwarded to the containing exception channel. HandlerTap is
used for the concurrent equivalent of unwind-protection in sequential
languages. 

5.7.2. Keepers

Normal exception handling proceeds with the above constructs, but
larger programs have many levels of exceptions: a server might raise
some exceptions in response to user requests, but it might raise others
because its algorithms broke or its data was corrupted. Keepers are lex-
ically nested exception managers. They intercept the dynamically
raised exceptions of any nested computation in order to decide whether
the exception should be signalled to a client or acted upon internally.
An example is if a database gets a disk checksum error, it shouldn't
report bad-page errors to its caller, it should gracefully shutdown and
recover the page from backups. The syntax for Keeper is similar to that
of Handler:

Signal exception 

this signal will reraise the exception in the handler outside this code example. The 

server 'bounce?' is defined outside the above Handler, so its signals are not 

intercepted.

endServer 

Production Production Definition 

signal Signal opExpr

handler Handler opExpr

block

endHandler 

HandlerTap opExpr

block

endHandlerTap 

A simple Keeper example:

Keeper ex

Server database ...

This issue needs further explo-
ration because many of the 
unwind-protection problems 
go away in the course of solv-
ing other concurrency 
problems.
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If the above had been a Handler form, any exceptions raised in the data-
base server would have been raised directly to the database caller. The
Keeper form intercepts any exceptions that escape its lexical scope
whereas the Handler form just captures any that escape the dynamic
scope (the innermost call). Thus this keeper can make sure that the
exceptions reported out are client-worthy.

Keepers are also used with the Boundary facilities defined in Chapter 7
to provide debugger access when particular exceptions occur. Granting
of debugger access is a carefully managed capability, and seems to cor-
respond well with the keeper model of exceptions.

5.8. Standard Protocol

The standard protocol is the small set of messages to which all servers
should respond. These are for purposes such as type queries and server
comparison.

A server should reveal true in response to an “=” operation if it consid-
ers the other to be a suitable representative of itself. This is only
appropriate if the other can continue to represent the receiver forever.
Therefore, servers with independently mutable state which happen to
currently have the same state must reveal false. The hash: operation
reveals a hash value for use in equality tests, Therefore, the hash must
never change (or it can’t support hash tables) and the hashes of equal
servers (servers that reveal true to the equals message) must be equal.

The type: and prove-type: operations support type checking and type
dispatch. The type: operation reveals the type the server claims to
implement. The prove-type: operation is used by Type servers to verify
that the server in fact implements their behavior. It is for internal use
and should be ignored.

The respond: operation asks the server to send itself to the port. This
allows clients of a server to delay executing code until the server actu-
ally starts responding to messages. The respond: operation also allows
clients of a channel with several receiving servers to separate them.

some service that raises exceptions

endServer 

endKeeper 
The handler for the keeper.

Server ex

op disk-crash: device page

backup recover:

otherwise exception

Signal exception

endServer 

Type Basic

op = other flag>

op hash: hash>

op type: type>

op prove-type: type token>

op respond: to

endType 

We are currently revisiting the 
distinction between keepers 
and handlers to clarify when to 
use one and when to use the 
other. For now we recommend 
using Handler. We are exploring 
the idea of designating an error 
scope when signalling an 
exception. If the exception is 
not handled within that error 
scope, it becomes an error. This 
satisfies much of the need for 
keepers: a disk-crash error 
would be signalled as an error 
within the server, not a client 
error.

The directionality of  “=” pre-
vents spoofing: a server can’t 
claim to substitute for another 
server, it can only claim that 
another server can substitute 
for it.
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5.9. Standard Servers

Standard servers are the server types that normal implementations
require. This section documents those standard servers that are familiar
to traditional programmers. Other standard servers such as verifiers for
security will be documented in the appropriate sections.

5.9.1. Number

This section describes the user level protocol for Numbers (integers,
etc.). The particulars of representation restrictions and interaction
between number types will not be documented. The contract is not
defined here.

These Types specify the required behavior for the specific Integer and
IEEEFloat number types:

Type Number

super Basic

relational operators

op = num flag>

op != num flag>

op < num flag>

op > num flag>

op <= num flag>

op >= num flag>

op min: num min>

op max: num max>

arithmetic operators

op + num sum>

op – num difference>

op * num product>

op / num dividend>

op % num remainder>

op // num intDividend>

op //% num div> rem>

op negated: result>

op abs: result>

extended math operators

op ceiling: result>

op floor: result>

op truncated: result>

op rounded: result>

op log: n result>

op ln: n result>

op exp: n result>

endType 

Type Integer

super Number

bit-wise Boolean operators

op | num result>

op & num result>

op ̂  num result>

op complement: result>

bit representation operations

op << bits left>

op >> bits right>

op precision: bits>

op highBit: index>

endType 

Type IEEEFloat

super Number

op mantissa: result>

op exponent: result>

op precision: bits>

endType 
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5.9.2. Tuple

Tuples are the primitive construct for messages. This section describes
their protocol.

5.9.3. Channel Distributor

Distributors are the ports that talk to the channel itself; operations
include forwarding the channel, choosing an element of it, and the stan-
dard primitive operations.

5.9.4. Boolean

Booleans respond to standard Boolean logic messages as well as a few
messages for control structures.

5.9.5. Array

Arrays are primitive servers that are used as the basis for collection
classes, strings, etc. These are generally recommended against for pro-

Type Tuple

super Basic

tuple access protocol

op count: count>
op name: name>

op get: arg# arg>

endType 

Type Distributor

super Basic

forward all messages ever received to 'port'

op → port

send a pair with a message and the distributor to a newly created channel which will 

contain all the contents of the server except the separated message. 

op choose: choice

endType 

Type Boolean

super Basic

relational operators

op = bool flag>

op != bool flag>
Boolean operators

op | bool flag>

op & bool flag>

op ̂  bool flag>

op complement: flag>

Control structure operations

op ifTrue: trueThunk race
Send trueThunk to race if the server is True. The race will invoke the first thunk sent to 

it.

op ifFalse: falseThunk race

Send falseThunk to race if the server is False. The race will invoke the first thunk sent 

to it.

op if: trueThunk falseThunk race

Send trueThunk to race if the server is True, or falseThunk if the server is False. The 

race will invoke the first thunk sent to it.

endType 
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grammers: they implement side-effects that lead to synchronization
bugs. Arrays are to support efficient implementation of safer collection
structures.

Array will also support a variety of group operations like copying and
searching. This allows range checking to preserve memory safety, but
allows extremely efficient operations (copying devolves to memory
block transfer operations, for instance). There will also be subtypes that
efficiently support primitive representation types like characters.

5.9.6. Types

Types are the runtime servers that can be queried about instances. 

The isTypeOf: operation uses the prove: operation to verify that the can-
didate server implements the type that the receiver represents. Further
messages for types will exist to query them about the protocol that they
require, and about default implementations.

5.10. Module Programming

This section will describe a module system to support the creation and
maintenance of complex programs, once the design settles. The module
system shares many characteristics with configuration version manage-
ment systems.

5.10.1. Module Interface Definitions 

Module Interface Definitions are like abstract types for modules; they
allow the use of a module to be independent from the definition of the
module. This supports complex systems with more than one imple-
mentation of a module coexisting. This is required for simultaneously
running a system while testing a new version of it.

5.10.2. Export/Import/Open

This section will describe the syntax and semantics for managing mod-
ules. These are the static definitions in a module for connecting it to the
rest of the computational universe. They will include which interfaces
to import and how to import them, what authentication to require and
how to negotiate it, and so on.

5.10.3. Module Namespace 

This section will describe the module naming scheme. Several running
Joule systems may exist for years before becoming connected. No glo-

Type Array

super Basic

op count: 

op get: key# value>

op store: key# value

endType 

Type Type

op isTypeOf: candidate yes?>

endType 
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bal naming scheme could possibly work. In addition, this scheme must
integrate with existing file systems for early versions of Joule.

5.10.4. Module Versions

In a continuously running system, modules of code need to be
replaced, upgraded, and patched. This section will describe a proposal
for version and configuration management of modules. The current
model for the module system is based on configuration versions man-
agement with nesting scopes of modules.

5.10.5. Naming People

Systems of software grow in a context of interacting groups of people.
There must be some way to represent appropriate information about
the connection between pieces of software, live objects, and the people
or companies responsible for or in control of them.

5.11. Parts of a Joule System

Figure 5.1 shows how the individual parts of a production Joule system
fit into the architecture. The bottom half of the hourglass represents the
Joule kernel implementation. The “waist” of the diagram is the primi-
tive semantics and the compositional semantics needed to compose the
rest of the Joule system from them. Above the “waist” are the compo-
nents of a full Joule system (standard libraries, the distributed Joule
layer, and so forth); specialized libraries supporting tools such as neu-
ral networks and genetic algorithms; and applications packages.

Some components in the top half of the hourglass are directly sup-
ported by companions in the bottom half; for example, the math
libraries will to some extent rely on the default behaviors of some of the
primitive servers such as Integers.
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Execution Engine: 
ForAll—composite servers

Tuples, Boundaries, 

Channel (Define, →, choose:)

• (message send)

 

Primitive Servers:
Boolean, Character

Integer, Float

Array, Verifier

external server interface

 

Kernel Implementation: 
platform-specific to take 

maximum advantage of 

characteristics of hardware

 

Standard Programming Constructs: Type, 

If, Switch, Server, Handler, Keeper, 

Signal, implicit parameters,

Modules, Quasi-Literals, 

syntax extension, types

 

Application Packages

 

: 
Page Layout, Source Code Control, etc.

 

Software Components: Neural Nets, Concurrent GUI Framework, 

Constraints, Genetic Algorithms, Database, etc.

 

Standard Extensions: Persistence, Distribution, Factories, Plans,

Auditors, Math libraries, Collections (tables, sets, bags, …),

SpaceBanks, Meters, Engines, Workers, bidding agents, etc.

“the
waistline”

a standard
Joule system

user
applications

Fig. 5.1 The “hourglass”
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