

20 Dec 95 DRAFT 65

6.Hierarchical Accounts Example

This chapter presents a more complex example of Joule programming,
a hierarchical bank account. Hierarchical bank accounts are part of ago-
ric resource management; they implement hierarchical ownership and
drawing authority. The account is hierarchical because it can have mul-
tiple sub-accounts, each of which is budgeted drawing power on the
parent account (and each of which is itself a hierarchical account).

The

root

 server is not an account but the environment in which top-
level accounts are created. Each top-level account can be thought of as
the supply of a single currency. In this model, there is no exchange
between currencies; each is completely separate.

A hierarchical account can create sub-accounts with arbitrary balances.
The balances an account may assign to its subaccounts are unlimited.
When a sub-account within that account needs to transfer funds out-
side of the parent account, however, the amount is limited by the
balance of the parent account. This is because the balances of their

The importance of hierarchical
ownership and drawing
authority is explained in Sec-
tion 9.1.

Fig. 6.1 Tree of hierarchical accounts

root

A B C

A1 A2 A3 C1

A21 A22 C11 C12

(depth 0)

(depth 1)

(depth 2)

(depth 3)

B1 B2 B3 C2

A31

A (400)

A1 (5000) A2 (7000)

A12 (12,000)A11 A21 (1000) A22

400

400

Fig. 6.2 Transfer of funds

Hierarchical Accounts Example

66 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

respective parent accounts must be balanced as well. In Figure 6.2, any
amount (up to the balance of

A11

) can be transferred from

A11

 to

A12

,
because these are totally internal to the

A1

 parent account; however, the
transfer of 400 credits from

A12

 to

A21

 must be covered by a corre-
sponding transfer from

A12

’s parent

A1

 to

A21

’s parent

A2

. The
maximum amount for such a move is

A1

’s balance of 5,000 tokens.

In general, the amount that can be transferred from one account to
another anywhere in the hierarchy is the minimum of the local balances
of the accounts on the path from the donor account to the nearest ances-
tor it has in common with the recipient account (not including the
common ancestor account itself).

For example, in Figure 6.3, the most that could be transferred from

A122

 to

A2

 or any of its descendants is 5,000 tokens, the minimum
among the local balances of

A122

 and its ancestors

A12

 and

A1

. The
most that could be transferred from

A211

 to

A1

 or any of its subac-
counts is 1,000, the minimum of the balances of

A211

,

A21

, and

A2

.

6.1. Hierarchical Accounts Components

6.1.1. Type Definitions

To program such a system of

Account

 servers in Joule, we first define the
type

Account

. Any server claiming to be of type

Account

 must accept the
set of requests specified by this

Type

 form:

The

split:

 request will instruct the account to create a sibling account
and transfer

amount

 from its own balance to the new account. The result
revealed is the public channel to the new account. Because this new
account is created by its sibling, its balance must be deducted from the
balance of the existing sibling account; money is conserved among sib-

Type

 Account

super

 Basic

op

 split: amount account>

op

 deposit: account amount deposited?>

op

 budget: amount account>

op

 balance: max account balance>

op

 private: priv>

endType

A (400) = first common ancestor

Fig. 6.3 Nearest common ancestor for two accounts

A1 (5000) = min along path A2 (7000)

A11 A12 (12,000) A21 (1000)

A121 A122 (6000)

A22

A212A211 (4000)

The term fractal reserve banking
has been applied to this hierar-
chical system of accounts. The
system is “fractal” because it
applies the device of fractional
reserve banking recursively.
The logical relationship of
pieces to wholes does not
change at different levels of
granularity—the system exhib-
its the fractal property of self-
similarity.

Hierarchical Accounts Components

20 Dec 95 DRAFT 67

lings. The

budget:

 request instructs the account to create a new
subaccount, with an initial balance of

amount

, which (since it is internal
money) can be arbitrary. The

deposit:

 request transfers

amount

 from an
existing

account

 to the account receiving the request.

The

balance:

 request takes three arguments: an amount, another
account, and a result channel. The

balance:

 request addresses the ques-
tion “Could this account transfer

max

 tokens into

account

?” The result
revealed is the minimum of

max

 and the maximum amount available
for such a transfer (which is the minimum of all the balances of ances-
tors from the queried account to the ancestor it has in common with

account

). The candidate amount

max

 is present to avoid infinities in the
protocol.

The second

Type

 form defines the

private requests

 any

Account

 should
accept:

Private methods

 can only be activated by requests received on the
server’s private channel. A server can receive from any number of
channels;

private channels

 are closely held because they accept messages
with special capabilities. The same message, received via private and
public channels to a server, might produce completely different behav-
ior. The private requests to an

Account

 server are used for special
functions which should be kept secure.

The

public:

 request reveals the acceptor for a public channel to the
server. This ensures that any server which has access to the private
channel of an

Account

 can send messages to its public channel as well.

The

depth:

 request reveals how far down in the account hierarchy this
account is. It is used only for finding the first common ancestor of two
accounts. The

parent:

 request reveals an acceptor for the private chan-
nel of this account’s parent. The private

balance:

 requests are used to
implement the public

balance:

 requests.

The

reserve:

 request instructs the account to adjust its own balance to
reflect an impending withdrawal. This adjustment is conditionally
based on the

commit?

 flag passed to it. The

success>

 distributor is used
to signal success or failure to the server which sent the

reserve:

 request.

6.1.2. The

make-account

 Server

The procedure

make-account

 creates new

Account

 servers. Nested
within it is the

Server

Account

 form that defines the behavior of the cre-
ated accounts.

Type

 AccountPrivate

super

 Basic

op

 public: pub>

op

 depth: depth>

op

 parent: parent>

op

 balance: max ancestor balance>

op

 reserve: amount ancestor commit? success>

endType

Server

 make-account :: amount parent account>

• account>

→

 account

Server

 account

The “?” suffix is conventional in
Joule to indicate a flag, a port to a
Boolean value (true or false).

Hierarchical Accounts Example

68 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

The new server

account

 is created using the parameters passed with the
“::” request to

make-account

. The result distributor

account>

 corre-
sponds to an acceptor held by the server that called

make-account

; that
server can thus send to the new account.

The new account is created with three instance variables.

myLocalBal-

ance

 has the initial value

amount

 provided in the call to

make-account

.
The parent

myParent

 of the new account is specified by the supplied
acceptor

parent

. This acceptor must be for the private channel of the
parent account because of the special information subaccounts need
about their ancestors (for example, the

depth:

 request, needed to deter-
mine common ancestors, is private).

6.1.2.1. The split: Request

The op extensions to the Server form define the methods of the account.
The split: request creates a sibling account:

The Define statement creates a channel balance which can be used
immediately by the set statement to change (if necessary) the account’s
local balance. The statements of a Joule program execute concurrently.
The instance variable myLocalBalance can be set to balance before the
server that will receive from balance is known. If some other computa-
tion sends to myLocalBalance before balance is defined, those messages

Server account

var myLocalBalance = amount

var myParent = parent

var myDepth = (parent depth:) + 1

implements Account

op split: amount account>

Define balance

If amount < 0

• balance> → myLocalBalance

Signal positive-amount-required: amount

orIf amount > myLocalBalance

• balance> → myLocalBalance

Signal insufficient-funds: myLocalBalance

else

• balance> → myLocalBalance - amount

• make-account :: amount myParent account>

endIf

endDefine

set myLocalBalance balance

parent account

current

 account

new

 sibling

 account

$

Fig. 6.4 split: creates new sibling account

Hierarchical Accounts Components

20 Dec 95 DRAFT 69

will wait in the channel until the server that should receive them is
determined.

Meanwhile, the If guards race to evaluate. If the creation of the account
fails because a negative initial balance was specified for the new
account, or because the current account does not contain enough tokens
to provide the requested initial balance for the sibling, then balance
sends to myLocalBalance (meaning that myLocalBalance ends up
unchanged), and the appropriate exception is Signaled.

Otherwise, the initial balance of the new account is deducted from the
present balance of this account, and make-account is sent the “::”
request to create the new account. Since it is a sibling of this account, it
has the same parent (and is passed the private channel to that parent).

6.1.2.2. The budget: Request

The method for the budget: request is even simpler. Creation of a subac-
count has no effect on the local balance of the current account, so we

only need to check that the initial balance requested is non-negative.
The request to make-account is straightforward:

Because the new subaccount must have private access to its parent (the
current account), the acceptor for this account’s Private channel is
passed in the request to make-account.

6.1.2.3. The balance: Request

The public balance: request “passes the buck” to its private
counterpart.

op budget: amount account>

If amount < 0

Signal positive-amount-required: amount

else

• make-account :: amount Private account>

endIf

reveal the balance of the receiver with respect to the ancestor in common with supplied

account.

op balance: max account balance>

Define

common =

common-ancestor :: Private (private :: account)

endDefine

to Private balance: max common balance>

Since accounts happen to never
have negative values, the If is
actually a determinate choice.

current account

new sub-

account

Fig. 6.5 budget: creates a new subaccount, with any balance

$nowhere

Hierarchical Accounts Example

70 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

6.1.2.4. The private: Request

The private: request instructs the server to reveal its private channel.

Sending the private: request to the public channel forwards the sup-
plied distributor to the private channel. This implementation is clearly
insecure. The methods enabling a server to decide securely whether or
not to reveal its private channel (using a SealedEnvelope) will be dis-
cussed in Section 8.2.1.

6.1.2.5. The deposit: and reserve: Requests

The deposit: request transfers an amount from another account to this
account. Whether or not the deposit attempt succeeded is revealed on

the result channel deposited?>. Before the deposit: method can proceed
with the transfer, it needs to ensure that the donor account is actually
able to transfer that amount. It does this by sending the reserve: request
to the private channel of the donor account.

The deposit: method accepts three arguments: account, from which the
deposit is being transferred; the amount of the deposit, and a result flag
deposited?, letting the depositor know that the deposit succeeded.

op private: priv>

• priv> → Private

op deposit: account amount deposited?>

Define

accPriv = private :: account,

common = common-ancestor :: Private accPriv,

withdrawn? =

accPriv reserve: amount transferAmt common

endDefine

• deposited?> → withdrawn?

Define transferAmt

If withdrawn? & amount >= 0

• transferAmt> → amount

else
• transferAmt> → 0

endIf

endDefine
Define ignore> endDefine

to Private reserve: 0 (transferAmt negated:) common ignore>

common ancestor

current

 account

other

 existing

 account

$

Fig. 6.6 deposit: transfers money from another existing account

Hierarchical Accounts Components

20 Dec 95 DRAFT 71

The first Define statement calls the private server to get the private chan-
nel of the depositing account. Again, this version of private does not
implement real Joule security techniques.

In response to the “::” message, private sends the request private: priv>
to account’s public channel; account then forwards priv> to account’s pri-
vate channel.

Back in the op deposit: block, accPriv is an acceptor for the depositor’s
private channel. The next Define block calls the common-ancestor proce-
dure. In response to the “::” request, common-ancestor forwards the

distributor ancestor> to the closest common ancestor of the acc1 and
acc2 accounts. It does this by calling itself recursively: if the depth of
one account is greater than the other, it recurs with the shallower
account and the parent of the deeper account as arguments. If both
accounts are of the same depth, it recurs with their two parents. This
continues until the new arguments are (acceptors for) the same account.

The next Define statement sets withdrawn? to the success flag of the
statement accPriv reserve: amount transferAmt common. This statement
sends the private request reserve: to the private channel of the deposit-
ing account, asking it to verify that it can in fact transfer the amount
requested.

The set statement can immediately tell myLocalBalance to deliver to
newBalance—that is, either the same value it presently has, or its
present value minus transferAmt. Again, messages to myLocalBalance
will be held and delivered after the new value of myLocalBalance is
determined.

What is the value of transferAmt? It is set in the deposit: method—if the
flag withdrawn? indicates that the money was reserved as requested,
transferAmt is set to the amount specified in the original deposit: request.
If withdrawn? indicates that the depositor was unable to reserve the
amount requested, then transferAmt is set to zero, and the depositor’s
local balance does not change.

This is one of the powerful benefits of Joule’s inherent concurrency. The
deposit: method of the server receiving the deposit sends the reserve:

Reveal the private channel of account. This procedure will be substituted later for one

that is secure.

Server private :: account priv>

• account private: priv>

endServer

Server common-ancestor :: acc1 acc2 ancestor>

Define d1 = acc1 depth: , d2 = acc2 depth: endDefine

If d1 < d2

• common-ancestor :: acc1 (acc2 parent:) ancestor>

orIf d1 > d2

• common-ancestor :: (acc1 parent:) acc2 ancestor>

orIf (d1 = d2) & (acc1 != acc2)

• common-ancestor :: (acc1 parent:) (acc2 parent:) ancestor>

orIf acc1 = acc2

• ancestor> → acc1

endIf

endServer

The facet Private extension to
the Server form introduces the
private methods of the Account
server. All ops following facet
Private, are private methods.

Hierarchical Accounts Example

72 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

request to the depositing server with an argument transferAmt that does
not yet have a value. The depositing server can determine, based on the
other arguments of the request, whether or not the request can succeed,
and can inform the receiver of this (via the result channel success?>).
Based on this go/no-go result flag, the server which sent the reserve:
request can now supply the value of transferAmt. Meanwhile, both serv-
ers have already used transferAmt to adjust their own local balances.

If the depositor is an ancestor of the receiver, then the depositor does
not adjust its own balance—the transfer is entirely internal to the ances-
tor and does not affect the ancestor’s local balance. The withdrawn? flag
is set to true, but no money is subtracted from the ancestor’s balance.

Both deposit: and reserve: recur to the respective parent accounts,
because those balances must also be adjusted by the amount of the
transfer, up to but not including the common ancestor of the two
accounts. To that common ancestor, the transfer of monies is completely
internal, but to every intermediate account, the transfer is real money.

6.1.2.6. Other Private Requests

The other private methods of Account are fairly straightforward:

Any server holding the private channel to this account should presum-
ably be allowed to hold the public channel as well; the private request
public: reveals it. The depth: and parent: requests are used only by com-
mon-ancestor.

facet Private

type AccountPrivate

op reserve: reserveAmt transferAmt ancestor success?>

Define newBalance, parent'

If (reserveAmt <= myLocalBalance) &

(Private != ancestor)

• myParent reserve: reserveAmt transferAmt

ancestor success?> then

parent'>

• newBalance> → myLocalBalance - transferAmt

else

• parent'> → myParent

• newBalance> → myLocalBalance

• success?> → Private = ancestor

endIf

set myParent parent’

set myLocalBalance newBalance

op public: pub>

• pub> → account

op depth: depth>

• depth> → myDepth

op parent: parent>

• parent> → myParent

Hierarchical Accounts Components

20 Dec 95 DRAFT 73

6.1.2.7. The Private balance: Request

The private balance: request reveals the balance of the receiver with
respect to an account known to be its ancestor. (Normally, this will be
called with the result revealed by common-ancestor.)

The If guard ancestor = Private halts the recursive passing of balance:
requests up the tree when they reach the ancestor itself. The then exten-
sion to the sending of balance: to myParent is there to ensure that
messages from an account to its parent arrive in the order in which they
were sent. (If you deposit a sum of money into an empty account, then
try to withdraw some of it, the withdrawal attempt will fail unless the
order of the requests is preserved.)

The set and Define statements are running concurrently. The set reas-
signs myParent to the acceptor parent' created by Define. All messages
sent to myParent are forwarded into the channel parent' and held there.
The then statement is an extension to the message-send statement. It
takes as its argument a distributor whose messages (if any) will be for-
warded to the target of the send, guaranteed to arrive after the one sent
in the original message. In this case, the target is myParent, and the dis-
tributor is parent'>, which is holding the messages meant for myParent
that piled up behind the privileged message balance: localBal ancestor
balance>. If the other clause of the If wins and the Define is never exe-
cuted, then parent'> and all the messages in it are forwarded directly to
myParent in the ordinary Joule fashion, without any ordering.

6.1.3. The root Server

Recursive requests that are passed all the way up the “money tree” bot-
tom out at the server root, which is the “parent” of the top-level

op balance: max ancestor balance>

Define parent'

If ancestor = Private

• balance> → max
• parent'> → myParent

else

Define

localBal = myLocalBalance min: max

endDefine

• myParent balance: localBal ancestor balance>

then parent'>

endIf

endDefine

set myParent parent'

endServer

endServer

Server root

op mint: amount account>
If amount < 0

Signal positive-amount-required:

else

• make-account :: amount Private account>

endIf
facet Private

type AccountPrivate

Hierarchical Accounts Example

74 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

accounts. Except for the mint: request, it accepts only private mes-
sages—the same set of private messages as Account, so its private facet
is also of type AccountPrivate. The public mint: request creates a new cur-
rency (a top-level account), with the money supply amount, and reveals
that account’s public channel on account>. (Note that root signals an
exception to the reserve: request—once a currency is created, its total
money supply cannot be increased.

Here are uninterrupted program listings for the make-account, common-
ancestor, private, and root servers:

6.2. Program Listings

6.2.1. make-account
Server make-account :: amount parent account>

• account> → account

Server account

var myLocalBalance = amount

var myParent = parent

var myDepth = (parent depth:) + 1

type Account

op split: amount account>

Define balance

If amount < 0

• balance> → myLocalBalance

Signal positive-amount-required: amount

orIf amount > myLocalBalance

• balance> → myLocalBalance

Signal insufficient-funds: myLocalBalance

else

• balance> → myLocalBalance - amount

• make-account :: amount myParent account>

endIf

endDefine

set myLocalBalance balance

op budget: amount account>

If amount < 0

Signal positive-amount-required: amount

else

• make-account :: amount Private account>

endIf

op balance: max account balance>

Define

common =

op public: pub>

Signal not-a-currency:

op depth: depth>

• depth> → 0

op parent: parent>

Signal broken-recursion:

op balance: max ancestor balance>

Signal different-currencies:

op reserve: amount ancestor commit? success>

Signal different-currencies:

• success> → false

endServer

Program Listings

20 Dec 95 DRAFT 75

common-ancestor :: Private (private :: account)

endDefine

to Private balance: max common balance>

op deposit: account amount deposited?>

Define

accPriv = private :: account,

common = common-ancestor :: Private accPriv,

withdrawn? =

accPriv reserve: amount transferAmt common

endDefine

• deposited?> → withdrawn?

Define transferAmt

If withdrawn? & amount >= 0

• transferAmt> → amount

else

• transferAmt> → 0

endIf

endDefine

Define ignore> endDefine

to Private reserve: 0 (transferAmt negated:) common ignore>

op private: priv>

• priv> → Private

facet Private

type AccountPrivate

op reserve: reserveAmt transferAmt ancestor success?>

Define newBalance, parent'

If (reserveAmt <= myLocalBalance) &

(Private != ancestor)

• myParent reserve: reserveAmt transferAmt ancestor

success?> then parent'>

• newBalance> → myLocalBalance - transferAmt

else

• parent'> → myParent

• newBalance> → myLocalBalance

• success?> → Private = ancestor

endIf

set myParent parent’

set myLocalBalance newBalance

op public: pub>

• pub> → account

op depth: depth>

• depth> → myDepth

op parent: parent>

• parent> → myParent

op balance: max ancestor balance>

Define parent'

If ancestor = Private

• balance> → max

• parent'> → myParent

else

Define

localBal = myLocalBalance min: max

endDefine

• myParent balance: localBal ancestor balance>

then parent'>

endIf

endDefine

set myParent parent'

endServer

Hierarchical Accounts Example

76 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

endServer

6.2.2. common-ancestor
Server common-ancestor :: acc1 acc2 ancestor>

Define d1 = acc1 depth: , d2 = acc2 depth: endDefine

If d1 < d2

• common-ancestor :: acc1 (acc2 parent:) ancestor>

orIf d1 > d2

• common-ancestor :: (acc1 parent:) acc2 ancestor>

orIf (d1 = d2) & (acc1 != acc2)

• common-ancestor :: (acc1 parent:) (acc2 parent:) ancestor>

orIf acc1 = acc2

• ancestor> → acc1

endIf

endServer

6.2.3. private
Server private :: account priv>

• account private: priv>

endServer

6.2.4. root
Server root

op mint: amount account>

If amount < 0

Signal positive-amount-required:

else

• make-account :: amount Private account>

endIf

facet Private

type AccountPrivate

op public: pub>

Signal not-a-currency:

op depth: depth>

• depth> → 0

op parent: parent>

Signal broken-recursion:

op balance: max ancestor balance>

Signal different-currencies:

op reserve: amount ancestor commit? success>

Signal different-currencies:

• success> → false

endServer

