
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

A PictureBook of
Secure Cooperation

Marc Stiegler
Visiting Scholar, HP

May 16, 2007 2

Yin and Yang, POLA and Delegation

POLA

Delegation

The Principle of Least Authority (POLA) simply
states, give people exactly the authority they
need, neither more nor less.

To have enough authority, one must often
receive a part of someone else’s authority:
POLA requires delegation. To avoid excess
authority, delegation must only include what is
needed: delegation requires POLA.

POLA is required for security. Delegation is
required for cooperation. Secure cooperation is
not possible without both.

This picturebook presents a toolkit of composable building blocks from which
an endless variety of patterns of secure cooperation may be built. Each
element supplies both delegation and security, as do systems built with them

May 16, 2007 3

Facet

File
Read Facet

GetBytes

SetBytes

GetBytes

•A facet presents a subset of the authorities embodied in a more powerful object.
In this example, a read facet is made for a simple read/write File object with 2
methods, getBytes() and setBytes(bytes). The getBytes method and its reply are
transparently forwarded through the Read Facet; the setBytes method is not.

May 16, 2007 4

Revocable Forwarder

File Forwarder

Revoker
Revoke()

All
File

Methods

•A revocable forwarder has 2 parts: the forwarder simply forwards messages&replies
to&from the underlying powerful object. The revoker, when called into action,
destroys the link to the underlying object, effectively revoking the authority conveyed
by the forwarder. The Revoker holds only the power to revoke; it can be given to
people who are not trusted with the forwarded file authority.

May 16, 2007 5

Composition

File Read Facet
Revocable
Forwarder

Already we have enough parts to do interesting compositions. Combining a
read facet and a revocable forwarder, we create a temporary read authority.
In practice, if a programmer needs to create a revocable read facet, he may
create a single object rather than 2 as depicted here. But one can imagine
tools, even graphical tools given to end users, that would allow tinker-toy
construction of POLA-rized delegatable authorities as depicted here.

May 16, 2007 6

Logger (Logging Forwarder)

File Logger

Log

All
File

Methods

Recipient Description

The logger is another forwarder that simply creates an audit trail of messages sent
to the powerful authority by the recipient of the logger. The recipient description
may be the “petname” of the entity to whom the authority is being granted.
Petnames are described later.

May 16, 2007 7

Accountability

Project
Folder

Alice

Alice
Logger

Bob Carol

Alice’s Log
Bob Actions

Bob
Logger

Bob’s Log
Carol’s Actions

Alice is logging all Bob’s actions on the project. She holds Bob accountable for
anything that happens to the project via the logging forwarder she gave him. Bob
holds Carol accountable for any action via the logger he gives to her. Alice holds
Bob responsible for anything Carol does. This exactly parallels the way delegation
and accountability occur in the physical world

May 16, 2007 8

Polarized Delegation Chain

Corporate File Server

Applications Folder

Application
ConfigFile

Bob at CorpIT Alice at
DeptIT

Mike App
owner

Alan Config
Maintainer

A chain of delegations, each of which is more restricted. Alan maintains the configuration
file for an application in the app folder on a corporate server. No person should have to
grant an excess authority to anyone; no person should have to grant any authority to
someone they do not personally have reason to trust. The composition should still work
correctly even if Mike is an employee of the application vendor. If Alice revokes Mike, the
Alan authority needs to be automatically revoked for security to be preserved in an intuitive,
locally-comprehensible fashion. This is a real life example, only the names are changed.

Personal relationships in green

May 16, 2007 9

Sealer/Unsealer

Secret Object
Sealer

Unsealer

Sealed Box

Seal(obj)

unSeal() The sealer/unsealer pair supplies the same
semantics as a public/private key pair, but
in the local case, using object references,
does not need any actual crypto.

An object is placed in a sealed box using the sealer. The object can be retrieved
from the box only by using the unsealer. If the sealer is made public, and the
unsealer is held privately, anyone can send the holder of the unsealer a secret
object (“encryption”). If the unsealer is made public, and the sealer held privately,
anyone can know that the object was put in the box by the owner of the sealer
(“signing”)

May 16, 2007 10

Petnames

Petname systems are able to surmount the paradox of Zooko’s Triangle, which
states that any single name can have only two of the three desirable properties:
globality, secure uniqueness, and memorableness. Domain names, for example,
are global and memorable, but are not securely unique (both forgeable and
phishable). In a petname system, the key is global and secure. The nickname is
the key owner’s own suggestion as to the memorable name for himself, global
and memorable. The petname is assigned by a user of the key; it is secure and
memorable, but private rather than global.

May 16, 2007 11

Finance 1: Credit Card Breach

Card Issuer Account

Buyer

Merchant

In the credit card model of financial transactions, the owner of the card grants full
authority over the whole credit line to the merchant; the merchant takes as much
as he desires. The result is inevitable: fraud on a massive scale, resulting in risk
management transaction overheads comparable to imposition of a second
California State Sales Tax.

This is a pattern of failure, in which delegation is so important that people will
delegate even without POLA, voluntarily breaching their own security. The
consequences are both obvious (fraud, high overhead rates) and subtle (harsh
restrictions on who may qualify as a merchant).

May 16, 2007 12

Simple Bank
Bank

Paying
Account

Receiver
Account

Transient
Purse

In a simple secure bank transfer, the payer creates a temporary purse to
hold the payment, and gives the receiver a reference to the purse. The
receiver is considered paid after bank acknowledgement that the money
has been transferred from the purse to the recipient account. In the
simplest version of this, the accounts and purses all use the same
protocol, i.e., they are all purses. In the industrial version (the Waterken
IOU protocol), an additional separate object, the transfer object, is
introduced to accommodate more complex relationships.

May 16, 2007 13

Finance 2: Periodic Payment

Bank

Account

Buyer
Merchant

Deposit
Facet Account

Automated
Withdrawal

Facet

In the Periodic Payment, the merchant gives the buyer a deposit-only
facet on his account. The buyer gives that facet to an object he creates
with a reference to his own account, that periodically withdraws money
from the account and sends it to the deposit facet. This is similar to the
way the program Quicken automates monthly bills.

May 16, 2007 14

Finance 3: Variable Periodic
Payment

Bank

Account

Owner
Merchant

Variable
Withdrawer Account

Withdrawal
Rate

Limited
Facet

A monthly electric bill fluctuates in cost. A risk-limiting approach for the buyer is to
create a withdrawal-limited facet on his account for the vendor. The facet might
implement, “allow withdrawals up to $350 every 30 days”. This facet is handed to
the merchant, who hands it to the program that computes the monthly cost, and
withdraws that amount. If the amount requested for withdrawal exceeds the
authorization, both owner and merchant are notified.

May 16, 2007 15

Simple Escrow Agent

TraderA

Item1

TraderB

Issuer/Exchanger

Item2

F1a F2bF2aF1b

Escrow Agents and other more complex systems can be built from the components
described earlier. Here we have an issuer of a pair of tradable items. The current owners
of the items (i.e., the entities who have exclusive, though revocable, forwarders to the
items) wish to trade. The owners place their items in an exchanger. Each trader is given a
limited facet on the other owner’s object used to verify the desired item. When both traders
confirm the trade, each trader’s original forwarder is revoked, and the verification facets
are replaced/upgraded to full power exclusive references. The Diablo II item trading
interface works this way. It demonstrates such exchanges can be so intuitive, no
instructions are needed to operate safely and effectively.

May 16, 2007 16

The Missing Pictures
The patterns described in this picturebook are simple because they discard the modern fascination with
the identities of the participants. Individual Authentication is so pervasive, it is now a part of the
problem. Suppose that your car, instead of accepting a delegatable key, demanded that your driver’s
license match the car’s title registry, which happens to be in your spouse’s name. Entrepreneurs would
leap forward to develop ever more powerful "identity management" for automobiles. We would
subcontract to security experts so our teenage daughters could borrow the car to buy milk. Heaven
forfend that the daughter, breaking her leg, had to delegate to her best friend to get to the hospital.

The patterns here do not require individual authentication. Rather, these patterns focus on authorization:
ask not, “who are you?”, but rather, “are you allowed?”. This was always the crucial question anyway;
by asking this better question, we get a better answer.

Many of the latest buzzwords and hottest technologies in computer security answer the wrong
questions. They often actively hinder delegation or POLA or both. A world of secure cooperation would
dispense with them. No one would miss their passing. Offenders include:

Multiple Passwords. Centralized Identity Management. Federated Identity Management. Access Control
Lists. True Name authentication. Certificate Authorities. File Attachment Suppressors. Trust Zones.
Firewalls.

These systems are absent from this picturebook. If this disturbs you, feel welcome to contact the author
for more details about their true relevance in a clean, well-lighted place for secure cooperation.

May 16, 2007 17

Sample Code in E

Following are samples of code for
secure cooperation written in E. For
more information about E, and secure
cooperation in general, please visit

http://www.erights.org

May 16, 2007 18

Facet

def makeReadOnlyFile(fullPowerFile) {
def readOnlyFile {

to getBytes() { return fullPowerFile.getBytes() }
}
return readOnlyFile

}

May 16, 2007 19

Revocable Forwarder

def makeForwarderRevokerPair(var target) {
def forwarder {

match [verb, args] { E.call(target, verb, args) }
}
def revoker {

to revoke() { target := null }
}
return [forwarder, revoker]

}

May 16, 2007 20

Logger (Logging Forwarder)

def makeLogger(accessedObject, recipientName, logWriter) {
def logger {

match [verb, args] {
logWriter.println(“Access: “ + recipientName)
logWriter.println(“Method: “ + verb)
for each in args { logWriter.println(“ with arg: “ + each) }
E.call(accessedObject, verb, args)

}
}
return logger

}

May 16, 2007 21

Sealer/Unsealer
def makeSealerUnsealerPair() {

var shared := def none {}
def sealer {

to seal(obj) {
return def box { to share() { shared := obj }}

}
}
def unsealer {

to unseal(box) {
shared := none
try { box.share(); require(shared != none)

return shared
} finally { shared := none }

}
}
return [sealer,unsealer]

}

May 16, 2007 22

Simple Bank

def makeBank(name :String) :any {
def [sealer, unsealer] := makeBrandPair(name)

return def bank {
to makePurse(var balance :(int >= 0)) :any {

def decr(amount :(0..balance)) :void {
balance -= amount

}
return def purse {

to getBalance() :int { return balance }
to makePurse() :any { return bank.makePurse(0) }
to getDecr() :any { return sealer.seal(decr) }
to deposit(amount :int, src) :void {

unsealer.unseal(src.getDecr())(amount)
balance += amount

} } } } }

May 16, 2007 23

Acknowledgements

Thank you to all the members of the E-lang community,
especially Fred Spiessens, Julien Couvreur, Chip
Morningstar, Mark Miller, and Alan Karp, all of whose
comments led to improvements in the current draft.

Also thank you to John Wilkes, who inspired the creation
of this document.

